→ 1 сверхзвуковой самолет. Сверхзвуковой пассажирский самолет: от идеи президента к реальности. Основные проблемы гиперзвуковых решений

1 сверхзвуковой самолет. Сверхзвуковой пассажирский самолет: от идеи президента к реальности. Основные проблемы гиперзвуковых решений

6-го февраля в 1950-м во время очередного испытания советский реактивный истребитель МиГ-17 в горизонтальном полете превысил скорость звука, разогнавшись почти до 1070-и км/ч. Это превратило его в первый сверхзвуковой самолет серийного производства. Разработчики Микоян и Гуревич явно гордились своим детищем.

Для боевых полетов МиГ-17 считался околозвучным, так как его крейсерская скорость не превышала 861 км/ч. Но это не помешало истребителю стать одним из самых распространенных в мире. В разное время он состоял на вооружении Германии, Китая, Кореи, Польши, Пакистана и десятков других стран. Этот монстр принял участие даже в боевых действиях во Вьетнамской войне.

МиГ-17 - далеко не единственный представитель жанра сверхзвуковых самолетов. Мы расскажем еще о десятке воздушных лайнеров, которые тоже опередили звуковую волну и стали известными во всем мире.

Bell X-1

ВВС США специально оснастили Bell X-1 ракетным двигателем, так как хотели с его помощью изучить проблемы сверхзвукового полёта. 14-го октября в 1947 аппарат разогнался до 1541 км/ч (число Маха 1.26), преодолел заданный барьер и превратился в звезду поднебесья. Сегодня модель-рекордсменка покоится в Смитсоновском музее в Штатах.

Источник: NASA

North American X-15

North American X-15 тоже оснащен ракетными двигателями. Но, в отличие от своего американского коллеги Bell X-1, этот самолет достиг скорости 6167 км/ч (число Маха 5,58), превратившись в первого и на 40 лет единственного в истории человечества (с 1959-го) пилотируемым гиперзвуковым летательным аппаратом, совершавшим суборбитальные пилотируемые космические полёты. С его помощью изучали даже реакцию атмосферы на вход в нее крылатых тел. Всего произведено три единицы ракетопланов типа Х-15.


Источник: NASA

Lockheed SR-71 Blackbird

Грех не применять сверхзвуковые самолеты в военных целях. Поэтому ВВС США спроектировали Lockheed SR-71 Blackbird - стратегический разведчик с максимальной скоростью 3700 км/ч (число Маха 3,5). Главные достоинства - быстрый разгон и высокая маневренность, позволившая ему уклоняться от ракет. Также SR-71 был первым самолётом, который оснастили технологиями снижения радиолокационной заметности.

Построено всего 32 единицы, 12 из которых разбились. В 1998-м снят с вооружения.


Источник: af.mil

МиГ-25

Не можем не вспомнить отечественный МиГ-25 - сверхзвуковой высотный истребитель-перехватчик 3-го поколения с максимальной скоростью 3000 км/ч (число Маха 2,83). Самолет был настолько крутым, что на него позарились даже японцы. Поэтому 6-го сентября в 1976-м советскому летчику Виктору Беленко пришлось угнать МиГ-25. После этого в течение многих лет во многих частях Союза самолеты начали заправлять не до конца. Цель - чтобы они не долетали до ближайшего иностранного аэропорта.


Источник: Алексей Бельтюков

МиГ-31

Советские ученые не прекращали трудиться на воздушное благо отечества. Поэтому в 1968-м началась проектировка МиГ-31. А 16-го сентября в 1975-м он впервые побывал в небе. Этот двухместный сверхзвуковой всепогодный истребитель-перехватчик дальнего радиуса действия разогнался до скорости 2500 км/ч (число Маха 2,35) и стал первым советским боевым самолётом четвёртого поколения.

МиГ-31 предназначен для перехвата и уничтожения воздушных целей на предельно малых, малых, средних и больших высотах, днём и ночью, в простых и сложных метеоусловиях, при активных и пассивных радиолокационных помехах, а также ложных тепловых целях. Четыре МиГ-31 могут контролировать воздушное пространство протяжённостью до 900 километров. Это не самолет, а гордость Союза, которая до сих пор состоит на вооружении России и Казахстана.


Источник: Виталий Кузьмин

Lockheed/Boeing F-22 Raptor

Самый дорогой сверхзвуковой самолет построили американцы. Они смоделировали многоцелевой истребитель пятого поколения, который стал самым дорогим среди коллег по цеху. Lockheed/Boeing F-22 Raptor на сегодняшний день является единственным состоящим на вооружении истребителем пятого поколения и первым серийным истребителем со сверхзвуковой крейсерской скоростью 1890 км/ч (1,78 Маха). Максимальная скорость 2570 км/ч (2,42 Маха). Его в воздухе до сих пор никто так и не превзошел.


Источник: af.mil

Су-100/Т-4

Су-100/Т-4 («сотка») разрабатывался в качестве истребителя авианосцев. Но инженерам ОКБ Сухого удалось не просто достигнуть поставленной цели, а смоделировать крутой ударно-разведывательный бомбардировщик-ракетоносец, который потом хотели применить даже в качестве пассажирского самолета и разгонщика для авиационно-космической системы Спираль. Максимальная скорость Т-4 - 3200 км/ч (3 Маха).


Когда может подняться в небо новый сверхзвуковой пассажирский самолет? Бизнес-джет на базе бомбардировщика Ту-160: реально? Как бесшумно преодолеть звуковой барьер?

Ту‑160 - самый крупный и мощный в истории военной авиации сверхзвуковой самолет и самолет с изменяемой геометрией крыла. Среди летчиков получил прозвище "Белый лебедь". Фото: AP

Есть ли у сверхзвуковых пассажирских машин перспектива? - спросила я не так давно выдающегося российского авиаконструктора Генриха Новожилова.

Конечно, есть. По крайней мере сверхзвуковой бизнес-самолет обязательно появится, - ответил Генрих Васильевич. - Мне не раз доводилось беседовать с американскими бизнесменами. Они четко заявляли: "Если бы такой самолет появился, господин Новожилов, то, как бы дорого он ни стоил, его бы у вас мгновенно купили". Скорость, высота и дальность - три фактора, которые актуальны всегда.

Да, актуальны. Мечта любого бизнесмена: утром перелететь через океан, заключить крупную сделку, а вечером вернуться домой. Современные самолеты летают не быстрее 900 км/ч. А сверхзвуковой бизнес-джет будет иметь крейсерскую скорость около 1900 км в час. Какие перспективы для делового мира!

Вот почему ни Россия, ни Америка, ни Европа никогда не оставляли попыток создать новую сверхзвуковую пассажирскую машину. Но история тех, что уже летали - советского Ту-144 и англо-французского "Конкорда", - научила многому.

В декабре этого года будет полвека, как Ту-144 совершил первый полет. А спустя год лайнер показал, на что конкретно способен: преодолел звуковой барьер. Он набрал скорость в 2,5 тыс. км/ч на высоте 11 км. Это событие вошло в историю. В мире до сих пор нет аналогов пассажирских бортов, которые способны повторить подобный маневр.

"Сто сорок четверка" открыла принципиально новую страницу в мировом самолетостроении. Рассказывают, на одном из совещаний в ЦК КПСС конструктор Андрей Туполев докладывал Хрущеву: машина получается довольно прожорливой. Но тот лишь махнул рукой: ваше дело - утереть нос капиталистам, а керосина у нас - хоть залейся...

Нос - утерли. Керосином - залились.

Впрочем, и европейский конкурент, взлетевший позже, тоже не отличился экономичностью. Так, в 1978 году девять "Конкордов" принесли своим компаниям около 60 млн долларов убытка. И только правительственные субсидии спасли положение. Тем не менее "англо-француз" летал вплоть до ноября 2003 года. А вот Ту-144 списали намного раньше. Почему?

Прежде всего не оправдался хрущевский оптимизм: в мире разразился энергетический кризис и цены на керосин устремились вверх. Сверхзвуковой первенец сразу же окрестили "удавом на шее "Аэрофлота". Огромный расход топлива нокаутировал и проектную дальность полетов: Ту-144 не дотягивал ни до Хабаровска, ни до Петропавловска-Камчатского. Только из Москвы до Алма-Аты.

И если бы только это. 200-тонный "утюг", курсировавший над густонаселенными районами на сверхзвуковой скорости, буквально взорвал все пространство вдоль трассы. Посыпались жалобы: надои у буренок упали, куры перестали нестись, кислотные дожди задавили... Где правда, где ложь - сегодня однозначно не скажешь. Но факт остается фактом: "Конкорд" летал только над океаном.

Наконец, самое важное - катастрофы. Одна - в июне 1973-го на авиасалоне в парижском Ле Бурже, что называется, на виду у планеты всей: экипаж летчика-испытателя Козлова хотел продемонстрировать возможности советского лайнера... Другая - через пять лет. Тогда выполнялся испытательный полет с двигателями новой серии: они как раз должны были вытащить самолет на необходимую дальность.

"Конкорд" тоже не избежал трагедии: самолет разбился в июле 2000 года при вылете из аэропорта Шарль де Голль. По иронии судьбы, он рухнул почти там, где когда-то Ту-144. Погибли 109 человек на борту и четверо на земле. Регулярные пассажирские перевозки возобновились только год спустя. Но последовала еще череда инцидентов, и на этом сверхзвуковике тоже поставили жирную точку.

31 декабря 1968 года состоялся первый полет Ту‑144, на два месяца раньше "Конкорда". А 5 июня 1969 года на высоте 11 000 метров наш самолет первым в мире вырвался за пределы звукового барьера. Фото: Сергей Михеев/ РГ

Сегодня, на новом витке развития технологий, ученым необходимо найти баланс между противоречивыми факторами: хорошей аэродинамикой нового сверхзвукового самолета, небольшим расходом топлива, а также жесткими ограничениями на шум и звуковой удар.

Насколько реально создать новый пассажирский сверхзвуковик на базе бомбардировщика Ту-160? С точки зрения чисто инженерной - вполне, говорят эксперты. И в истории есть примеры, когда военные самолеты успешно "снимали погоны" и улетали "на гражданку": так, Ту-104 был создан на основе дальнего бомбардировщика Ту-16, а Ту-114 - бомбардировщика Ту-95. В обоих случаях пришлось переделывать фюзеляж - менять схему расположения крыла, расширять диаметр. Фактически это были новые самолеты, и достаточно успешные. Кстати, любопытная деталь: когда Ту-114 впервые прилетел в Нью-Йорк, там в ошарашенном аэропорту не нашлось ни подходящего по высоте трапа, ни тягача...

Схожие работы как минимум потребуются и по конверсии Ту-160. Однако насколько это решение будет экономически эффективно? Все требуется тщательно оценить.

Сколько нужно таких самолетов? Кто и куда на них будет летать? Насколько они будут коммерчески доступны для пассажиров? Как скоро окупятся затраты на разработку?.. Билеты на том же Ту-144 стоили в 1,5 раза дороже обычных, но даже такая высокая стоимость не покрывала эксплуатационных затрат.

Между тем, как утверждают эксперты, первый российский сверхзвуковой административный самолет (бизнес-джет), может быть спроектирован за семь-восемь лет при наличии задела по двигателю. Такой самолет сможет вместить до 50 человек. Общий спрос на внутреннем рынке прогнозируется на уровне 20-30 машин при цене 100-120 млн долларов.

Серийный сверхзвуковой пассажирский самолет нового поколения может появиться около 2030 года

Над проектами сверхзвуковых бизнес-джетов работают конструкторы по обе стороны океана. Все ищут новые компоновочные решения. Кто-то предлагает нетипичный хвост, кто-то - совершенно необычное крыло, кто-то - фюзеляж с изогнутой центральной осью...

Специалисты ЦАГИ разрабатывают проект СДС/СПС ("сверхзвуковой деловой самолет / сверхзвуковой пассажирский самолет"): по задумке, трансатлантические перелеты на расстояние до 8600 км он сможет выполнять с крейсерской скоростью не менее 1900 км/ч. Причем салон сделают трансформируемым - из 80-местного в 20-местный VIP-класса.

А минувшим летом на авиасалоне в Жуковском одной из самых интересных стала модель высокоскоростного гражданского самолета, созданная учеными ЦАГИ в рамках международного проекта HEXAFLY-INT. Этот самолет должен летать со скоростью более 7-8 тыс. км/ч, соответствующей числам Маха 7 или 8.

Но чтобы высокоскоростной гражданский самолет стал реальностью, предстоит решить огромный спектр задач. Они связаны с материалами, водородной силовой установкой, ее интеграцией с планером и получением высокой аэродинамической эффективности самого летательного аппарата.

И что уже совершенно точно: конструктивные особенности проектируемой крылатой машины будут явно нестандартными.

Компетентно

Сергей Чернышев, генеральный директор ЦАГИ, академик РАН:

Уровень звукового удара (резкий перепад давления в ударной волне) от Ту-144 равнялся 100-130 паскалей. Но современные исследования показали: его можно довести до 15-20. Более того, снизить громкость звукового удара до 65 децибел, а это эквивалентно шуму большого города. До сих пор в мире нет официальных нормативов по допустимому уровню звукового удара. И скорее всего он будет определен не раньше 2022 года.

Мы уже предложили облик демонстратора сверхзвукового гражданского самолета будущего. Образец должен показать возможность снижения звукового удара в сверхзвуковом крейсерском полете и шума в районе аэропорта. Рассматриваются несколько вариантов: самолет на 12-16 пассажиров, также на 60-80. Есть вариант совсем маленького делового самолета - на 6-8 пассажиров. Это разные веса. В одном случае машина будет весить примерно 50 тонн, а в другом - 100-120 и т.д. Но стартуем мы именно с первого из обозначенных сверхзвуковых самолетов.

По разным оценкам, уже сегодня есть нереализованная на рынке потребность в быстрых перелетах деловых людей на самолетах с пассажировместимостью 12-16 человек. И, конечно, машина должна летать на расстояние не меньше 7-8 тысяч километров по трансатлантическим маршрутам. Крейсерская скорость будет 1,8-2 Маха, то есть примерно в два раза быстрее скорости звука. Такая скорость является технологическим барьером для использования в конструкции планера обычных алюминиевых материалов. Поэтому мечта ученых - сделать самолет полностью из температурных композитов. И хорошие наработки есть.

Четкие требования к самолету должен определить стартовый заказчик, и тогда на этапах эскизного проектирования и проведения опытно-конструкторских работ возможно некоторое изменение исходного облика самолета, полученного на этапе предварительного проектирования. Но обоснованные принципы снижения звукового удара останутся неизменными.

Недолгая пассажирская эксплуатация сверхзвукового Ту‑144 ограничилась рейсами из Москвы в Алма‑Ату. Фото: Борис Корзин/ Фотохроника ТАСС

Думаю, до летающего прототипа нас отделяет 10-15 лет. В ближайшее время, по нашим планам, должен появиться летающий демонстратор, облик которого прорабатывается. Его главная задача - продемонстрировать основные технологии создания сверхзвукового самолета с низким уровнем звукового удара. Это необходимый этап работы. Серийный сверхзвуковой самолет нового поколения может появиться на горизонте 2030 года.

Олег Смирнов, заслуженный пилот СССР, председатель комиссии по гражданской авиации Общественного совета Ространснадзора:

Сделать на базе Ту-160 пассажирский сверхзвуковик? Для наших инженеров - совершенно реально. Не проблема. Тем более что машина эта очень хорошая, с замечательными аэродинамическими качествами, хорошим крылом, фюзеляжем. Однако сегодня любой пассажирский самолет должен прежде всего соответствовать международным требованиям летной и технической годности. Несовпадений, если сравнивать бомбардировщик и пассажирский самолет, - более 50 процентов. Например, когда некоторые говорят, что при переделке надо "раздуть фюзеляж", надо понимать: сам Ту-160 весит более 100 тонн. "Раздуть" - это еще добавить вес. А значит - увеличить расход топлива, уменьшить скорость и высоту, сделать аппарат по своим эксплуатационным расходам абсолютно непривлекательным для любой авиакомпании.

Чтобы создать сверхзвуковой самолет для деловой авиации, нужны новая авионика, новые авиадвигатели, новые материалы, новые виды топлива. На Ту-144 керосин, что называется, лился рекой. Сегодня подобное невозможно. А главное - на такой самолет должен быть массовый спрос. Одна-две машины по заказу от миллионеров финансовой проблемы не решат. Авиакомпании должны будут брать его в лизинг и "отрабатывать" стоимость. На ком? Естественно, на пассажирах. С точки зрения экономики, проект станет провальным.

Сергей Мельниченко, генеральный директор МКАА "Безопасность полетов":

За почти 35 лет, прошедших с начала серийного выпуска Ту-160, технологии ушли вперед, и это придется учитывать при глубокой модернизации существующего самолета. Самолетостроители говорят, что намного проще и дешевле создать новый самолет в соответствии с новой концепцией, чем перестраивать старый.

Другой вопрос: если Ту-160 будет перестроен именно под бизнес-джет, заинтересуются ли им все-таки арабские шейхи? Однако есть несколько "но". Самолету нужно будет получить международный сертификат (а за его выдачей стоят Евросоюз и США), что очень проблематично. Кроме того, понадобятся новые экономичные двигатели, которых у нас нет. Те, которые имеются, топливо не потребляют, а пьют.

Если же самолет переоборудуют под перевозку эконом-пассажиров (что маловероятно), то вопрос - а куда летать и кого возить? Мы за прошлый год только-только подобрались к цифре 100 млн перевезенных пассажиров. В СССР эти показатели были куда выше. Количество аэродромов уменьшилось в несколько раз. Далеко не все, кто хотел бы слетать в европейскую часть страны с Камчатки и Приморья, могут себе это позволить. Билеты на "пьющий топливо самолет" будут дороже, чем на "боинги" и "эрбасы".

Если самолет планируется перестроить сугубо под интересы руководителей крупных компаний, то так, скорее всего, и будет. Но тогда этот вопрос касается сугубо их, а не российской экономики и людей. Хотя и в этом случае сложно представить, что полеты будут выполняться только в Сибирь или на Дальний Восток. Проблема с шумами на местности. А если обновленный самолет не пустят на Сардинию, то кому он нужен?

Ровно 15 лет назад три последних сверхзвуковых пассажирских самолета Concorde британской авиакомпании British Airways совершили прощальный полет. В тот день, 24 октября 2003 года, эти самолеты, пролетев на малой высоте над Лондоном, приземлились в «Хитроу» и тем завершили недолгую историю сверхзвуковой пассажирской авиации. Тем не менее, сегодня авиаконструкторы по всему миру вновь задумываются о возможности быстрых перелетов - из Парижа в Нью-Йорк за 3,5 часа, из Сиднея в Лос-Анджелес - за 6 часов, из Лондона в Токио - за 5 часов. Но прежде чем сверхзвуковые самолеты вернутся на международные пассажирские маршруты, разработчикам придется решить множество задач, среди которых одна из важнейших - уменьшение шумности быстрых летательных аппаратов.

Короткая история быстрых полетов

Пассажирская авиация начала формироваться в 1910-х годах, когда появились первые самолеты, специально спроектированные для перевозки людей по воздуху. Самым первым из них стал французский Bleriot XXIV Limousine компании Bleriot Aeronautique. Он использовался для увеселительных воздушных прогулок. Спустя два года в России появился С-21 «Гранд», созданный на базе тяжелого бомбардировщика «Русский витязь» Игоря Сикорского. Его построили на Русско-Балтийском вагонном заводе. Дальше авиация начала развиваться семимильными шагами: сперва начались перелеты между городами, потом между странами, а затем и между континентами. Самолеты позволяли добраться до места назначения быстрее, чем на поезде или корабле.

В 1950-х годах прогресс в разработке реактивных двигателей значительно ускорился, и для боевой авиации стали доступны, пусть и кратковременно, полеты на сверхзвуковой скорости. Сверхзвуковой скоростью принято называть движение до пяти раз быстрее скорости звука, которая меняется в зависимости от среды распространения и ее температуры. При нормальном атмосферном давлении на уровне моря звук распространяется со скоростью 331 метр в секунду, или 1191 километр в час. По мере набора высоты плотность и температура воздуха снижается, снижается и скорость звука. Например, на высоте 20 тысяч метров она составляет уже около 295 метров в секунду. Но уже на высоте около 25 тысяч метров и по мере ее набора до более чем 50 тысяч метров температура атмосферы начинает понемногу увеличиваться по сравнению с нижними слоями, а вместе с ней увеличивается и местная скорость звука.

Рост температуры на этих высотах объясняется, в том числе, высокой концентрацией в воздухе озона, образующего озоновый щит и поглощающего часть солнечной энергии. В результате скорость звука на высоте 30 тысяч метров над морем составляет около 318 метров в секунду, а на высоте 50 тысяч - почти 330 метров в секунду. В авиации для измерения скорости полета широко используется число Маха. Если говорить упрощенно, оно выражает местную скорость звука для конкретной высоты, плотности и температуры воздуха. Так, скорость условного полета, равная двум числам Маха, на уровне моря будет составлять 2383 километра в час, а на высоте 10 тысяч метров - 2157 километров в час. Впервые звуковой барьер на скорости 1,04 числа Маха (1066 километров в час) на высоте 12,2 тысячи метров преодолел американский летчик Чак Йегер в 1947 году. Это был важный шаг на пути освоения сверхзвуковых полетов.

В 1950-х годах авиаконструкторы в нескольких странах мира начали работать над проектами сверхзвуковых пассажирских самолетов. В итоге в 1970-х появились французский Concorde и советский Ту-144. Это были первые и пока еще единственные пассажирские сверхзвуковые самолеты в мире. Оба типа летательных аппаратов использовали обычные турбореактивные двигатели, оптимизированные для длительной работы в сверхзвуковом режиме полета. Ту-144 эксплуатировались до 1977 года. Самолеты летали на скорости в 2,3 тысячи километров в час и могли перевозить до 140 пассажиров. Однако билеты на их рейсы стоили в среднем в 2,5–3 раза дороже обычных. Низкий спрос на быстрые, но дорогостоящие перелеты, а также общие сложности в эксплуатации и обслуживании Ту-144 привели к тому, что их просто сняли с пассажирских рейсов. Однако самолеты еще какое-то время использовались в испытательных полетах, в том числе и по контракту с NASA.

Concorde прослужили заметно дольше - до 2003 года. Перелеты на французских лайнерах тоже стоили дорого и большой популярностью не пользовались, но Франция и Великобритания продолжали их эксплуатировать. Стоимость одного билета на такой перелет составляла, в пересчете на сегодняшние цены, около 20 тысяч долларов. Французский Concorde совершал полеты на скорости чуть более двух тысяч километров в час. Расстояние от Парижа до Нью-Йорка самолет мог покрыть за 3,5 часа. В зависимости от конфигурации Concorde могли перевозить от 92 до 120 человек.

История «Конкордов» закончилась неожиданно и быстро. В 2000 году произошла авиакатастрофа Concorde, в которой погибли 113 человек. Спустя год в пассажирских авиаперевозках начался кризис, вызванный терактами 11 сентября 2001 года (два угнанных террористами самолета с пассажирами врезались в башни Всемирного торгового центра в Нью-Йорке, еще один, третий, - в здание Пентагона в округе Арлингтон, а четвертый упал в поле недалеко от Шенксвилла в Пеннсильвании). Затем истек срок гарантийного обслуживания самолетов Concorde, которым занималась компания Airbus. Все эти факторы вместе сделали эксплуатацию сверхзвуковых пассажирских самолетов крайне невыгодными, и летом-осенью 2003 года авиакомпании Air France и British Airways по очереди списали все «Конкорды».


После закрытия программы Concorde в 2003 году надежда на возвращение сверхзвуковой пассажирской авиации в строй еще оставалась. Конструкторы надеялись на новые экономичные двигатели, аэродинамические расчеты и системы автоматизированного проектирования, способные сделать перелеты на сверхзвуковой скорости экономически доступными. Но в 2006 и 2008 году Международная организация гражданской авиации приняла новые стандарты авиационного шума, запретившие, помимо прочего, любые сверхзвуковые полеты над населенными участками суши в мирное время. Этот запрет не распространяется на специально выделенные для военной авиации воздушные коридоры. Работы над проектами новых сверхзвуковых самолетов затормозились, но сегодня снова начали набирать обороты.

Тихий сверхзвук

Сегодня разработкой сверхзвуковых пассажирских самолетов занимаются несколько предприятий и правительственных организаций в мире. Такие проекты, в частности, ведут российские компании «Сухой» и «Туполев», Центральный аэрогидродинамический институт имени Жуковского, французская Dassault, Японское агентство аэрокосмических исследований, европейский концерн Airbus, американские Lockheed Martin и Boeing, а также несколько стартапов, включая Aerion и Boom Technologies. В целом конструкторы условно разделились на два лагеря. Представители первого из них считают, что разработать «тихий», соответствующий по шумности дозвуковым лайнерам, сверхзвуковой самолет в ближайшее время не удастся, а значит, нужно построить быстрый пассажирский летательный аппарат, который будет переходить на сверхзвук там, где это разрешено. Такой подход, полагают конструкторы из первого лагеря, все равно позволит сократить время перелета из одной точки в другую.

Конструкторы из второго лагеря преимущественно сосредоточились на борьбе с ударными волнами. В полете на сверхзвуковой скорости планер самолета образует множество ударных волн, наиболее значимые из которых возникают в носовой части и в зоне хвостового оперения. Кроме того, ударные волны обычно появляются на передней и задней кромках крыла, на передних кромках хвостового оперения, в зонах завихрителей потока и на кромках воздухозаборников. Ударная волна представляет собой область, в которой давление, плотность и температура среды испытывают резкий и сильный скачок. Наблюдателями на земле такие волны воспринимаются как громкий хлопок или даже взрыв - именно из-за этого сверхзвуковые полеты над населенной частью суши запрещены.

Эффект взрыва или очень громкого хлопка производят ударные волны так называемого N-типа, образующиеся при взрыве бомбы или на планере сверхзвукового истребителя. На графике роста давления и плотности такие волны напоминают букву N латинского алфавита из-за резкого повышения давления на фронте волны с резкими же падением давления после него и последующей нормализацией. В ходе лабораторных экспериментов исследователи Японского агентства аэрокосмических исследований выяснили, что изменение формы планера может сглаживать пики на графике ударной волны, превращая ее в волну S-типа. Такая волна имеет плавный и не столь значительный, как у N-волны, перепад давления. Специалисты NASA полагают, что S-волны будут восприниматься наблюдателями как далекий хлопок автомобильной дверью.


N-волна (красная) до аэродинамической оптимизации сверхзвукового планера и подобие S-волны после оптимизации

В 2015 году японские конструкторы собрали беспилотный планер D-SEND 2, чья аэродинамическая форма была спроектирована таким образом, чтобы уменьшать количество возникающих на нем ударных волн и их интенсивность. В июле 2015 года разработчики испытали планер на ракетном полигоне «Эсрейндж» в Швеции и отметили существенное уменьшение количества ударных волн, образующихся на поверхности нового планера. Во время испытания D-SEND 2, не оснащенный двигателями, сбросили с воздушного шара с высоты 30,5 тысячи метров. Во время падения планер длиной 7,9 метра набрал скорость в 1,39 числа Маха и пролетел мимо расположенных на разной высоте привязных аэростатов, оборудованных микрофонами. При этом исследователи замеряли не только интенсивность и число ударных волн, но и анализировали влияния состояния атмосферы на раннее их возникновение.

По оценке японского агентства, звуковой удар от летательных аппаратов, сопоставимых по размерам со сверхзвуковыми пассажирскими самолетами Concorde и выполненных по схеме D-SEND 2, при полете на сверхзвуковой скорости будет вдвое менее интенсивным, чем раньше. От планеров обычных современных самолетов японский D-SEND 2 отличается не осесимметричным расположением носовой части. Киль аппарата смещен к носовой части, а горизонтальное хвостовое оперение выполнено цельноповоротным и имеет отрицательный угол установки по отношению к продольной оси планера, то есть законцовки оперения находятся ниже точки крепления, а не выше, как обычно. Крыло планера имеет нормальную стреловидность, но выполнено ступенчатым: оно плавно сопрягается с фюзеляжем, а часть его передней кромки расположена к фюзеляжу под острым углом, но ближе к задней кромке этот угол резко увеличивается.

По похожей схеме в настоящее время создается сверхзвуковой американского стартапа Aerion и , разрабатываемый Lockheed Martin по заказу NASA. С упором на уменьшение количества и интенсивности ударных волн проектируется и российский (Сверхзвуковой Деловой Самолет/Сверхзвуковой Пассажирский Самолет). Некоторые из проектов быстрых пассажирских самолетов планируется завершить в первой половине 2020-х годов, однако авиационные правила к тому времени пересмотрены все же еще не будут. Это означает, что новые самолеты первое время будут выполнять сверхзвуковые полеты только над водой. Дело в том, что для снятия ограничения на сверхзвуковые полеты над населенной частью суши разработчикам придется провести множество испытаний и представить их результаты на рассмотрение авиационных властей, включая Федеральное управление гражданской авиации США и Европейское агентство по безопасности полетов.


S-512 / Spike Aerospace

Новые двигатели

Еще одним серьезным препятствием на пути создания серийного пассажирского сверхзвукового самолета являются двигатели. Конструкторы уже сегодня нашли множество способов сделать турбореактивные двигатели экономичнее, чем они были десять-двадцать лет назад. Это и использование редукторов, убирающих жесткую сцепку вентилятора и турбины в двигателе, и применение керамических композиционных материалов, позволяющих оптимизировать температурный баланс в горячей зоне силовой установки, и даже введение дополнительного - третьего - воздушного контура вдобавок к уже существующим двум, внутреннему и внешнему. В области создания экономичных дозвуковых двигателей конструкторы уже достигли потрясающих результатов, а ведущиеся новые разработки обещают и вовсе существенную экономию. Подробнее о перспективных исследованиях вы можете почитать в нашем материале .

Но, несмотря на все эти разработки, сверхзвуковой полет экономичным назвать пока еще сложно. Например, перспективный сверхзвуковой пассажирский самолет стартапа Boom Technologies получит три турбовентиляторных двигателя семейства JT8D компании Pratt & Whitney или J79 компании GE Aviation. В крейсерском полете удельный расход топлива этими двигателями составляет около 740 граммов на килограмм-силы в час. При этом двигатель J79 может быть оснащен форсажной камерой, при использовании которой расход топлива увеличивается до двух килограммов на килограмм-силы в час. Такой расход сопоставим с расходом топлива двигателями, например, истребителя Су-27, задачи которого существенно отличаются от перевозки пассажиров.

Для сравнения, удельный расход топлива единственных в мире серийных турбовинтовентиляторных двигателей Д-27, установленных на украинском транспортнике Ан-70, составляет всего 140 граммов на килограмм-силы в час. Американский двигатель CFM56, «классика» лайнеров Boeing и Airbus, имеет удельный расход топлива в 545 граммов на килограмм-силы в час. Это означает, что без серьезной переработки конструкции реактивных авиационных двигателей сверхзвуковые полеты не станут достаточно дешевыми, чтобы получить широкое распространение, и будут востребованы разве что в деловой авиации - большой расход топлива ведет к росту цен на билеты. Снизить высокую стоимость сверхзвуковых авиаперевозок объемами тоже не получится - проектируемые сегодня самолеты рассчитаны на перевозку от 8 до 45 пассажиров. Обычные же самолеты вмещают больше сотни человек.

Тем не менее, в начале октября текущего года GE Aviation проект нового турбовентиляторного реактивного двигателя Affinity. Эти силовые установки планируется монтировать на перспективный сверхзвуковой пассажирский самолет AS2 компании Aerion. Новая силовая установка конструктивно объединяет в себе особенности реактивных двигателей с малой степенью двухконтурности для боевых самолетов и силовых установок с большой степенью двухконтурности для пассажирских самолетов. При этом каких-либо новых и прорывных технологий в Affinity нет. Новый двигатель GE Aviation относит к силовым установкам со средней степенью двухконтурности.

Основу двигателя составляет модифицированный газогенератор турбовентиляторного двигателя CFM56, который, в свою очередь, конструктивно основан на газогенераторе от F101, силовой установки для сверхзвуковых бомбардировщиков B-1B Lancer. Силовая установка получит модернизированную электронно-цифровую систему управления двигателем с полной ответственностью. Какие-либо подробности о конструкции перспективного двигателя разработчики не раскрыли. Тем не менее, в GE Aviation ожидают, что удельный расход топлива двигателями Affinity будет не намного выше или даже сопоставим с расходом топлива современными турбовентиляторными двигателями обычных дозвуковых пассажирских самолетов. Каким образом этого удастся добиться для сверхзвукового полета, не ясно.


Boom / Boom Technologies

Проекты

Несмотря на множество проектов сверхзвуковых пассажирских самолетов в мире (включая даже нереализуемый проект переделки стратегического бомбардировщика Ту-160 в пассажирский сверхзвуковой лайнер, предложенный президентом России Владимиром Путиным), наиболее близкими к летным испытаниям и мелкосерийному производству можно считать AS2 американского стартапа Aerion, S-512 испанского Spike Aerospace и Boom американского Boom Technologies. Планируется, что первый будет выполнять полеты на скорости 1,5 числа Маха, второй - 1,6 числа Маха, а третий - 2,2 числа Маха. Самолет X-59, создаваемый Lockheed Martin по заказу NASA, будет демонстратором технологий и летающей лабораторией, запускать его в серию не планируется.

В Boom Technologies уже заявили, что постараются сделать перелеты на cверхзвуковых самолетах очень дешевыми. Например, стоимость перелета по маршруту Нью-Йорк - Лондон в Boom Technologies оценили в пять тысяч долларов. Столько сегодня стоит перелет по этому маршруту в бизнес-классе обычного дозвукового лайнера. Лайнер Boom над населенной сушей будет летать на дозвуковой скорости и переходить на сверхзвук над океаном. Самолет при длине 52 метра и размахе крыла 18 метров сможет перевозить до 45 пассажиров. До конца 2018 года Boom Technologies планирует выбрать один из нескольких проектов нового самолета для реализации в металле. Первый полет лайнера планируется на 2025 год. Эти сроки компания перенесла; изначально Boom планировалось поднять в воздух в 2023 году.

По предварительным расчетам, длина самолета AS2, рассчитанного на 8-12 пассажиров, будет равняться 51,8 метра, а размах крыла - 18,6 метра. Максимальная взлетная масса сверхзвукового самолета составит 54,8 тонны. AS2 будет выполнять полеты над водой на крейсерской скорости в 1,4-1,6 числа Маха, замедляясь до 1,2 над сушей. Несколько меньшая скорость полета над сушей вкупе с особой аэродинамической формой планера позволит, как рассчитывают разработчики, почти полностью избегать формирования ударных волн. Дальность полета самолета на скорости в 1,4 числа Маха составит 7,8 тысячи километров и 10 тысяч километров - на скорости в 0,95 числа Маха. Первый полет самолета планируется на лето 2023 года, а на октябрь того же года - первый трансатлантический перелет. Его разработчики приурочат к 20-летию со дня последнего полета «Конкорда».

Наконец, Spike Aerospace планирует начать летные испытания полноценного прототипа S-512 не позднее 2021 года. Поставки первых серийных самолетов заказчикам запланированы на 2023 год. Согласно проекту, S-512 сможет перевозить до 22 пассажиров на скорости до 1,6 числа Маха. Дальность полета этого самолета составит 11,5 тысячи километров. С октября прошлого года Spike Aerospace нескольких уменьшенных моделей сверхзвукового самолета. Их целью является проверка конструкторских решений и эффективности элементов управления полетом. Все три перспективных пассажирских самолета создаются с упором на особую аэродинамическую форму, которая позволит уменьшить интенсивность ударных волн, образующихся при сверхзвуковом полете.

В 2017 году объем авиационных пассажирских перевозок во всем мире составил четыре миллиарда человек, из которых 650 миллионов совершили длительные перелеты протяженностью от 3,7 до 13 тысяч километров. 72 миллиона «дальнобойных» пассажиров летали первым и бизнес-классом. Именно на эти 72 миллиона человек разработчики сверхзвуковых пассажирских самолетов и нацеливаются в первую очередь, полагая, что они с удовольствием заплатят немного больше денег за возможность провести в воздухе примерно вдвое меньше времени, чем обычно. Тем не менее, сверхзвуковая пассажирская авиация, вероятнее всего, начнет активно развиваться после 2025 года. Дело в том, что исследовательские полеты лаборатории X-59 начнутся только в 2021 году и продлятся несколько лет.

Результаты исследований, полученные во время полетов X-59, в том числе и над населенными пунктами - добровольцами (их жители согласились, чтобы над ними в будние дни летали сверхзвуковые самолеты; после полетов наблюдатели будут рассказывать исследователям о своем восприятии шума), планируется передать на рассмотрение Федерального управления гражданской авиации США. Как ожидается, на их основе оно может пересмотреть запрет на сверхзвуковые полеты над населенной частью суши, но случится это не раньше 2025 года.


Василий Сычёв

Успехи в создании в 50-е годы сверхзвуковых боевых самолетов, в том числе и тяжелого класса, создало благоприятную обстановку для изучения возможности создания сверхзвукового пассажирского самолета (СПС). История появления первых проектов СПС уходит своими корнями в первые послевоенные годы, когда в США и Великобритании было предложено несколько гипотетических проектов, весьма далеких по своим техническим решениям от практической реализации. Во второй половине 50-х годов по обе стороны «железного занавеса» появляются сначала опытные, а затем и серийные сверхзвуковые тяжелые самолеты военного назначения, и, практически сразу на их базе ведущие мировые авиационные фирмы подготавливают проекты СПС различных аэродинамических и компоновочных схем. Детальный анализ и дальнейшая проработка предложенных проектов СПС на базе первых сверхзвуковых бомбардировщиков показали, что создание эффективного конкурентноспособного СПС путем модификации военного прототипа — задача крайне сложная (в отличие от процесса создания первых реактивных пассажирских самолетов на базе дозвуковых тяжелых боевых самолетов).

Первые сверхзвуковые боевые тяжелые самолеты по своим конструктивным решениям в основном отвечали требованиям сравнительно кратковременного полета на сверхзвуке. Для СПС требовалось обеспечить длительный крейсерский полет на скоростях соответствующих как минимум М=2, плюс специфика задачи по перевозки пассажиров требовала значительного повышения надежности работы всех элементов конструкции самолета, при условии более интенсивной эксплуатации с учетом увеличения длительности полетов на сверхзвуковых режимах. Постепенно, анализируя все возможные варианты технических решений, авиационные специалисты, как в СССР, так и на Западе пришли к твердому мнению, что экономически эффективный СПС необходимо проектировать как принципиально новый тип летательного аппарата.

Проектирование Ту-144 Андрей Николаевич решил поручить Отделению «К», занимавшемуся до этого беспилотной техникой и имевшему достаточный опыт в области освоения длительного полета со скоростями превышающими М=2 (ударный беспилотный самолет Ту-121, беспилотные самолеты-разведчики — серийный Ту-123 и опытный Ту-139). Главным конструктором и руководителем работ по теме Ту-144 Андрей Николаевич назначил А.А.Туполева. Именно под его руководством, с привлечением лучших сил отечественной авиационной науки и техники, в Отделении «К» рождалась идеология и будущий облик Ту-144. В дальнейшем после смерти А.Н.Туполева и назначения А.А.Туполева руководителем предприятия, темой Ту-144 руководили Ю.Н.Попов и Б.А.Ганцевский. Вскоре Ту-144 становится одной из основных и приоритетных тем в деятельности ОКБ и всего МАП на ближайшие 10 лет.

Аэродинамический облик Ту-144 определялся главным образом получением большой дальности полета на крейсерском сверхзвуковом режиме, при условии получения требуемых характеристик устойчивости и управляемости и заданных характеристик взлета и посадки. Исходя из обещанных удельных расходов НК-144, на первоначальном этапе проектировании поставили задачу получить на крейсерском сверхзвуковом режиме полета Кмакс=7. По суммарным экономическим, технологическим, весовым соображениям приняли число М крейсерского полета равным 2,2. В ходе проработки аэродинамической компоновки Ту-144 в ОКБ и в ЦАГИ рассматривалось несколько десятков возможных вариантов. Изучались «нормальная» схема с горизонтальным оперением в хвостовой части фюзеляжа, от нее отказались, так как подобное оперение давало до 20% в общем балансе сопротивления самолета. Отказались и от схемы «утка», оценив проблему влияния дестабилизатора на основное крыло. Окончательно исходя из условий получения требуемого аэродинамического качества и получения минимальных разбежек фокуса при дозвуковых и сверхзвуковых скоростях остановились на схеме низкоплана — «бесхвостки» с составным треугольным крылом оживальной формы (крыло образовывалось двумя треугольными поверхностями с углом стреловидности по передней кромке 78° — для передней наплывной части и 55° — для задней базовой части), с четырьмя ДТРДФ, размещенными под крылом, с вертикальным оперением, расположенным по продольной оси самолета, и трехопорным убирающимся шасси.

В конструкции планера в основном использовались традиционные алюминиевые сплавы. Крыло образовывалось из симметричных профилей и имело сложную крутку в двух направлениях: в продольном и поперечном. Этим достигалось наилучшее обтекание поверхности крыла на сверхзвуковом режиме, кроме того подобная крутка содействовала улучшению продольной балансировки на этом режиме. По всей задней кромке крыла размещались элевоны, состоявшие из четырех секций на каждом полукрыле. Конструкция крыла многолонжеронная, с мощной работающей обшивкой из сплошных плит, выполненных из алюминиевых сплавов, центральная часть крыла и элевоны изготовлялись из титановых сплавов. Секции элевонов приводились в действие двумя необратимыми бустерами. Руль направления также отклонялся с помощью необратимых бустеров и состоял из двух, независящих друг от друга, секций. Аэродинамическая форма фюзеляжа выбиралась из условий получения минимального сопротивления на сверхзвуковом режиме. Добиваясь этого, пошли даже на некоторое усложнение конструкции самолета.

Характерной особенностью Ту-144 стала опускающаяся, хорошо остекленная носовая часть фюзеляжа перед пилотской кабиной, что обеспечивало хороший обзор на больших взлетно-посадочных углах атаки, присущих самолету с крылом малого удлинения. Опускание и подъем носовой части фюзеляжа осуществлялся с помощью гидропривода. При конструировании отклоняющейся негерметичной части и ее агрегатов удалось добиться сохранения гладкости обшивки в местах сочленения подвижной части с герметичной кабиной и остальной поверхностью фюзеляжа. Форма мотогондол определялась в основном компоновочными соображениями и условиями надежности работы силовой установки. Четыре ДТРДФ НК-144 разместили под крылом близко друг к другу. Каждый двигатель имел свой воздухозаборник, причем два соседних воздухозаборника объединялись в общий блок. Подкрыльевые воздухозаборники — плоские с горизонтальным клином. Торможение потока при сверхзвуковых скоростях полета осуществлялось в трех косых скачках уплотнения, в прямом замыкающем скачке и дозвуковом диффузоре. Работа каждого воздухозаборника обеспечивалась автоматической системой управления, которая изменяла положение панелей клина и створки перепуска в зависимости от режима работы двигателя НК-144. Длина мотогондол определялась размерами двигателей и требованиями ЦАГИ и ЦИАМ к обеспечению необходимой длины каналов воздухозаборников для нормальной работы двигателей. Следует отметить, что в отличие от проектирования воздухозаборников и двигателей «Конкорда», где этот процесс шел как единое целое, проектирование НК-144 и мотогондол с воздухозаборниками шли как два во многом независимых процесса, что привело в какой-то степени к переразмеренности мотогондол и в дальнейшем ко многим взаимным неувязкам работы двигателей и системы воздухозаборников.

Предполагалось, как и на «Конкорде», ввести систему торможения на посадке за счет реверса двигателей, реверс планировалось установить на два крайних двигателя (систему реверса не довели, в результате опытная и серийные машины эксплуатировались с тормозным парашютом). Основные стойки шасси убирались в крыло, передняя стойка убиралась в переднюю часть фюзеляжа в пространство между двумя блоками воздухозаборников. Небольшая строительная высота крыла потребовала уменьшения размера колес, в результате в основных стойках шасси использовалась двенадцатиколесная тележка с колесами сравнительно небольшого диаметра. Основной запас топлива размещался в крыльевых кессон-баках. Передние кессон-баки крыла и дополнительный килевой бак служили для балансировки самолета. Основные работы по выбору оптимальной аэродинамической схемы Ту-144 в ОКБ возглавлял Г.А.Черемухин, вопросами оптимизации силовой установки по проекту занималось подразделение во главе с В.М.Булем На Ту-144 фактически были применены многие принципиальные решения дистанционной системы управления, в частности рулевые агрегаты привода органов управления самолета отрабатывали сигналы системы улучшения устойчивости и управляемости по продольному и путевому каналам. На некоторых режимах указанное мероприятие позволяло осуществлять полет при статической неустойчивости.

Выбор идеологии системы управления Ту-144 во многом является заслугой Г.Ф.Набойщикова. В создание и доведение этой принципиально новой системы управления большой вклад внес Л.М.Роднянский, ранее занимавшийся системами управления в ОКБ П.О.Сухого и В.М.Мясищева, и в начале 60-х годов сделавший очень много для доводки весьма «сырой» системы управления Ту-22. Кабина пилотов проектировалась с учетом требований современной эргономики, она выполнялась четырехместной: два передних места занимали первый и второй пилот, за ними размещался бортинженер, четвертое место на первой опытной машине предназначалось для инженера-экспериментатора. В дальнейшем предполагалось ограничить экипаж тремя пилотами. Отделка и компоновка пассажирского салона Ту-144 соответствовали мировым требованиям к современному дизайну и к комфортабельности, при их отделке использовались новейшие отделочные материалы. Пилотажно-навигационное оборудование Ту-144 комплектовалось самыми совершенными системами, какие могла дать на тот период отечественная авионика: совершенный автопилот и бортовая электронно-вычислительная машина автоматически поддерживали курс; летчики могли видеть на экране, размещавшемся на приборной доске, где в данный момент находится самолет и сколько километров осталось до места назначения; заход на посадку осуществлялся автоматически в любое время суток при сложных погодных условиях и т.д. — все это было серьезным рывком вперед для нашей авиации.

Постройка первого опытного самолета Ту-144 («044») началась в 1965 году, одновременно строился второй экземпляр для статических испытаний. Опытная «044» первоначально рассчитывалась на 98 пассажиров, позднее эта цифра была увеличена до 120. Соответственно расчетная взлетная масса увеличилась со 130 тонн до 150 тонн. Опытная машина строилась в Москве в цехах ММЗ «Опыт», часть агрегатов изготовлялась на его филиалах. В 1967 году была закончена сборка основных элементов самолета. В конце 1967 года опытную «044» перевезли в ЖЛИ и ДБ, где в течение всего 1968 года осуществлялись доводочные работы и доукомплектование машины недостающими системами и агрегатами.

Одновременно на аэродроме ЛИИ начались полеты самолета-аналога МиГ-21И (А-144, «21-11»), созданного на базе истребителя МиГ-21С . Аналог создавался в ОКБ А.И.Микояна и имел крыло геометрически и аэродинамически подобное крылу опытного «044». Всего было построено две машины «21-11», на них летали многие летчики-испытатели, в том числе и те которым предстояло испытывать Ту-144, в частности Э.В.Елян. Самолет-аналог успешно облетали до скорости 2500 км/ч и материалы этих полетов послужили основой для окончательной корректировки крыла Ту-144, а также позволили летчикам-испытателям подготовиться к особенностям поведения самолета с таким крылом.

В конце 1968 года опытный «044» (бортовой № 68001) был готов к первому полету. На машину назначили экипаж в составе: командира корабля — заслуженного летчика-испытателя Э.В.Е-ляна (получившего затем за Ту-144 Героя Советского Союза); второго пилота — заслуженного летчика испытателя Героя Советского Союза М.В.Козлова; ведущего инженера-испытателя В.Н.Бендерова и бортинженера Ю.Т.Селиверстова. Учитывая новизну и необычность новой машины, ОКБ пошло на неординарное решение: впервые на опытную пассажирскую машину решили установить катапультируемые кресла экипажа. В течение месяца проводились гонки двигателей, пробежки, последние наземные проверки систем. С начала третьей декады декабря 1968 года «044» находилась в предстартовой готовности, машина и экипаж были полностью готовы к первому вылету, в течение всех этих десяти дней над аэродромом ЛИИ не было погоды и опытный Ту-144 оставался на земле. Наконец, в последний день уходящего 1968 года, через 25 секунд после момента старта «044» впервые оторвалась от взлетной полосы аэродрома ЛИИ и быстро набрала высоту. Первый полет продолжался 37 минут, в полете машину сопровождал самолет-аналог «21-11».

Сверхзвуковой пассажирский самолет и это был самолет построенный в СССР, первый «Конкорд» уйдет в полет только 2 марта 1969 года. Было доказано на практике, что тяжелые самолеты бесхвостой схемы имеют права гражданства в СССР (до этого полета у нас все ограничивалось большим количеством проектов тяжелых «бесхвосток»). 5 июня 1969 года опытный самолет первый раз на высоте 11000 м превысил сверхзвуковую скорость, к маю 1970 года машина летала на скоростях М=1,25-1,6 на высотах до 15000 м. 12 ноября 1970 года в часовом полете «044» летала полчаса на скорости превышающей 2000 км/ч, на высоте 16960 м была достигнута максимальная скорость 2430 км/ ч. В ходе испытаний опытная машина неоднократно летала за рубежи СССР, в мае-июне 1971 года «044» приняла участие в салоне в Ле-Бурже, где она впервые «встретилась» с англо-французским «Конкордом». На «044» стояли опытные двигатели НК-144 с удельным расходом топлива на крейсерском сверхзвуковом режиме 2,23 кг/кгс час, с такими удельными расходами на испытаниях Ту-144 сумел выйти на сверхзвуковую дальность полета 2920 км, что было значительно меньше требуемой дальности. Кроме этого в ходе испытаний столкнулись с некоторыми конструктивными недоработками: в полетах наблюдались повышенная вибрация и нагрев хвостовой части фюзеляжа от счетверенного пакета двигателей, не выручали даже титановые конструкции. Выполнив программу испытательных полетов «044» (всего около 150 полетов), так и осталась в одном опытном экземпляре. От нее большего и не требовалось, свою задачу доказать техническую возможность создания в СССР сверхзвукового пассажирского самолета она выполнила. Необходимо было продвигаться дальше, улучшая конструкцию самолета и двигателей.

Работы по развитию базовой конструкции самолета «044» шли в в двух направлениях: создание нового экономичного бесфорсажного ТРД типа РД-36-51 и значительное улучшение аэродинамики и конструкции Ту-144. Результатом этого должно было стать выполнение требований по дальности сверхзвукового полета. Решение комиссии Совета Министров СССР по варианту Ту-144 с РД-36-51 было принято в 1969 году. Одновременно по предложению МАП-МГА принимается решение, до момента создания РД-36-51 и установки их на Ту-144, о строительстве шести Ту-144 с НК-144А с уменшеными удельными расходами топлива. Конструкцию серийных Ту-144 с НК-144А предполагалось значительно модернизировать, провести значительные изменения в аэродинамике самолета, получив на крейсерском сверхзвуковом режиме Кмакс более 8. Эта модернизация должна была обеспечить выполнение требований первого этапа по дальности (4000-4500 км), в дальнейшем предполагался переход в серии на РД-36-51.

Строительство предсерийного модернизированного самолета Ту-144 («004) началось на ММЗ «Опыт» в 1968 году. По расчетным данным с двигателями НК-144 (Ср=2,01) предполагаемая сверхзвуковая дальность должна была составлять 3275 км, а с НК-144А (Ср=1,91) превысить 3500 км. С целью улучщения аэродинамических характеристик самолета на крейсерском режиме М=2,2 изменили форму крыла в плане (стреловидность наплывной части по передней кромке уменьшили до 76 градусов, а базовой увеличили до 57 градусов), форма крыла стала ближе к «готической». По сравнению с «044», увеличилась площадь крыла, ввели более интенсивную коническую крутку концевых частей крыла. Однако самым важным нововведением по аэродинамике крыла стало изменение срединной части крыла, обеспечившее самобалансировку на крейсерском режиме с минимальными потерями качества, с учетом оптимизации по полетным деформациям крыла на этом режиме. Была увеличена длина фюзеляжа с учетом размещения 150 пассажиров, улучшена форма носовой части, что также положительно повлияло на аэродинамику самолета.

В отличие от «044» каждую пару двигателей в парных мотогондолах с воздухозаборниками раздвинули, освободив от них нижнюю часть фюзеляжа, разгрузив его от повышенных температурных и вибрационных нагрузок, при этом изменили нижнюю поверхность крыла в месте расчетной области под-жатия потока, увеличили щель между нижней поверхностью крыла и верхней поверхностью воздухозаборника — все это позволило интенсивней использовать эффект поджатия потока на входе в воздухозаборники на Кмакс, чем это удалось получить на «044». Новая компоновка мотогондол потребовала изменений по шасси: основные стойки шасси разместили под мотогондолами, с уборкой их внутрь между воздушными каналами двигателей, перешли к вось-миколесной тележке, изменилась также схема уборки носовой стойки шасси. Важным отличием «004» от «044» стало внедрение переднего многосекционного убирающегося в полете крылыш-ка-дестабилизатора, выдвигавшегося из фюзеляжа на взлетно-посадочных режимах, и позволявшего обеспечивать требуемую балансировку самолета при отклоненных элевонах-закрылках. Доработки конструкции, увеличение коммерческой нагрузки и запаса топлива привели к возрастанию влетной массы самолета, которая превысила 190 тонн (для «044» — 150 тонн).

Строительство предсерийного Ту-144 № 01-1 (бортовой № 77101) завершилось в начале 1971 года, 1 июня 1971 года самолет совершил первый полет. По программе заводских испытаний машина выполнила 231 полет, продолжительностью 338 часов, из них 55 часов самолет летал на сверхзвуке. На этой машине отрабатывались комплексные вопросы вопросы взаимодействия силовой установки и самолета на различных режимах полета. 20 сентября 1972 года машина совершила перелет по трассе Москва-Ташкент, при этом маршрут был пройден за 1 час 50 минут, крейсерская скорость во время полета достигала 2500 км/ч. Предсерийная машина стала основой для развертывания серийного производства на Воронежском авиационном заводе (ВАЗ), которому решением правительства было поручено освоение в серии Ту-144.

Первый полет серийного Ту-144 № 01-2 (бортовой № 77102) с двигателями НК-144А состоялся 20 марта 1972 года. В серии, по результатам испытаний предсерийной машины, была откорректирована аэродинамика крыла и еще раз несколько увеличена его площадь. Взлетная масса в серии достигла 195 тонн. Удельный расход топлива НК-144А к моменту эксплуатационных испытаний серийных машин намеревались довести до за счет оптимизации сопла двигателя до 1,65-1,67 кг/кгс час, а в дальнейшем до 1,57 кг/кгс час, при этом дальность полета должна была увеличиться до 3855-4250 км и 4550 км соответственно. Реально смогли достичь к 1977 году в ходе испытаний и доводок серии Ту-144 и НК-144А Ср=1,81 кг/ кгс час на крейсерском сверхзвуковом режиме тяги 5000 кгс, Ср=1,65 кг/кгс час на взлетном форсажном режиме тяги 20000 кгс, Ср=0,92 кг/кгс час на крейсерском дозвуковом режиме тяги 3000 кгс и на максимальном форсажном режиме на трансзвуковом режиме получили 11800 кгс.

3 июня 1973 года первая серийная машина во время демонстрационного полета в Ле-Бурже потерпела катастрофу. Погиб экипаж во главе с летчиком-испытателем М.В.Козловым (помимо М.В Козлова в этом полете погибли второй пилот В.М.Молчанов, Заместитель главного конструктор В.Н.Бендеров, бортинженер А.И.Дралин, штурман Г.Н. Баженов, инженер Б.А.Первухин). Для расследования катастрофы была создана комиссия, в которой принимали участия специалисты СССР и Франции. По результатам расследования французы отмечали, что отказа в технической части самолета не было, а причиной катастрофы явилось: наличие в кабине непристегнутых членов экипажа, внезапное появление самолета «Мираж» в поле зрения экипажа самолета Ту-144, наличие кинокамеры в руках одного из членов экипажа, которая при падении могла заклинить штурвал управления. Судя по всему в тот момент подобное заключение устраивало всех. Пожалуй наиболее емко и точно о катастрофе Ту-144 в Ле-Бурже в 90-е годы высказался Э.В.Елян: «Эта катастрофа — горький пример того, как стечение мелких на первый взгляд, незначительных небрежностей, в данном случае и со стороны французских служб управления полетами, привело к трагическим последствиям.»

Производство Ту-144 с НК-144А продолжалось в Воронеже до начала 1977 года. На этих машинах был проведен большой объем летных испытаний и начаты полеты с пассажирами. На Ту-144 № 02-1 (бортовой № 77103), первый полет выполнен 13 декабря 1973 года, отрабатывался пилотажно-навига-ционный комплекс НПК-144, система электроснабжения, проводились испытания на режимах прерванного взлета, совершались технические рейсы по городам СССР.

На Ту-144 № 02-2 (бортовой № 77144), первый полет 14 июня 1974 года, проводились исследования по аэродинамике, прочности, поведению на больших углах атаки, проверялась работа самолетных систем и оборудования в нештатных полетных ситуациях, в 1975 году машина летала в Ле-Бурже.

Ту-144 № 03-1 (бортовой № 77105) построили в 1973 году и сразу переделали в Ту-144Д с двигателями РД-36-51А.

Ту-144 № 04-1 (бортовой № 77106), первый полет 4 марта 1975 года, использовался для оценки эффективности работы СКВ, на нем решались некоторые проблемы по топливной системе. 26 декабря 1975 года на этой машине был выполнен первый эксплуатационный рейс по маршруту Москва — Алма-Ата. К этому моменту помимо летчиков МАП, на Ту-144 уже начали летать летчики МГА. Самолет перевозил по маршруту грузы, почту, полеты проходили на высотах 18000 м и со скоростями 2200 км/ч. В настоящее время Ту-144 № 04-1 можно видеть в экспозиции Музея в Монино.

Ту-144 № 04-2 (бортовой № 77108), первый полет 12 декабря 1975 года, проводились доводочные работы по системам навигационного оборудования, по АБСу-144, по системе директорного захода на посадку, по автомату тяги.

Ту-144 № 05-1 (бортовой № 77107), первый полет 20 августа 1975 года, после заводских испытаний и испытаний по различным программам, был представлен в 1977 году в качестве комплексного объекта на совместные государственные испытания. По результатам этих испытаний отмечалось, что летно-технические характеристики самолета, за исключением практической дальности полета с заданным числом пассажиров, взлетной массе, соответствуют заданным на Ту-144 требованиям (при испытаниях получили практическую дальность полета на сверхзвуке при взлетной массе 195 тонн при коммерческой нагрузке 15 тонн 3080 км, при 7 тоннах — 3600 км. Подчеркивалось, что дальность полета 4000-4500 км, при коммерческой нагрузке 14-15 тонн на Ту-144 с НК-144А не может быть реализована и отмечалось, что получение требуемой дальности возможно с двигателями РД-36-51А.

После окончания совместных испытаний принимается решение МАП-МГА о начале пассажирских перевозок на самолетах Ту-144 с НК-144А. Ту-144 № 05-2 (бортовой № 77109), первый полет 29 апреля 1976 года, и Ту-144 № 06-1 (бортовой № 77110), первый полет 14 февраля 1977 года, использовались для регулярных пассажирских перевозок по трассе Москва — Алма-Ата. В первый пассажирский рейс Ту-144 отправился 1 ноября 1977 года. Полеты на расстояние 3260 км на высоте 16000-17000 м со скоростью 2000 км/ч проводились один раз в неделю, количество пассажиров на борту не превышало 80 человек. До момента прекращения регулярной эксплуатации с пассажирами в мае 1978 года, экипажи Аэрофлота на Ту-144 выполнили 55 рейсов, перевезя 3284 пассажира. Ту-144 с НК-144А стал первым в СССР пассажирским самолетом, который получил национальный сертификат летной годности на безопасность перевозки пассажиров, остальные самолеты Аэрофлота в то время подобного сертификата не имели (исключение составлял Ту-134, который был сертифицирован в Польше по английским нормам летной годности).

Модификация: Ту-144
Размах крыла, м: 28,80
Длина самолета, м: 65,70
Высота самолета, м: 12,85
Площадь крыла, м2: 507,00
Масса, кг
-пустого самолета: 91800
-нормальная взлетная: 150000
-максимальная взлетная: 195000
Тип двигателя: 4 х ТРДДФ НК-144А
Тяга, кгс
-нормальная: 4 х 15000
-форсированная: 4 х 20000
Максимальная скорость, км/ч: 2500 (М=2,35)
Крейсерская скорость, км/ч: 2200
Практическая дальность, км: 6500
Дальность полета на сверхзвуке, км: 2920
Практический потолок, м: 18000-20000
Экипаж, чел: 3
Полезная нагрузка 150 пассажиров или 15000 кг груза.

Ту-144 перед первым полетом.

Ту-144 после взлета.

Скорость звуковой волны величина не постоянная даже при условии, что рассматриваемая среда распространения звука является воздухом. Скорость звука при фиксированной температуре воздуха и атмосферного давления изменяется с ростом высоты над уровнем моря.

По мере увеличения высоты над уровнем моря скорость звука уменьшается. Условной точкой отсчета величины является нулевой уровень моря. Итак, скорость с которой звуковая волна стелится по водной глади равняется 340.29 м/с при условии температуры окружающего воздуха в 15 0 С и атмосферного давления 760 мм. рт.ст. Итак, самолеты летающие со скоростью выше, чем скорость звука, называют сверхзвуковыми.

Первые достижение сверхзвуковой скорости

Сверхзвуковыми самолетами называют летательные аппараты исходя из их физической способности передвигаться со скоростью выше чем звуковые волны. В привычных для нас километрах в час этот показатель грубо равен 1200 км/ч.

Еще самолеты времен Второй мировой войны с поршневыми ДВС и создающими воздушный поток пропеллерами при пикировании уже достигали отметки скорости в 1000 км/ч. Правда по рассказам пилотов, в эти моменты самолет начинало жутко трясти вследствие сильной вибрации. Ощущение было такое, что крылья могут попросту оторваться от фюзеляжной части самолета.

Впоследствии при создании сверхзвуковых самолетов инженеры-проектировщики учитывали влияние воздушных потоков на конструкцию самолетов при достижении скорости звука.

Преодоление сверхзвукового барьера самолетом

Когда самолет передвигается среди воздушных масс он буквально рассекает воздух во все стороны, создавая шумовой эффект и расходящиеся во все направления волны воздушного давления. При достижении летательного аппарата скорости звука возникает момент, когда звуковая волна не способна обогнать самолет. Из-за этого перед фронтальной частью самолета возникает ударная волна в виде плотного барьера из воздуха.

Возникший впереди самолета слой воздуха в момент достижения летательным аппаратом скорости звука создает резкий рост сопротивления, что и служит источником изменения характеристик устойчивости самолета.

Когда самолет летит, звуковые волны распространяются от него во все стороны со скоростью звука. Когда самолет достигает скорости М=1, то есть скорости звук, звуковые волны скапливаются перед ним и образуют слой уплотненного воздуха. При скоростях выше скорости звука эти волны образуют ударную волну, которая достигает земли. Ударная волна воспринимается как звуковой удар, акустически воспринимаемый человеческим ухом внизу на земной поверхности как глухой взрыв.

Этот эффект можно постоянно наблюдать при проведении учений сверхзвуковых самолетов гражданским населением в районе полетов.

Еще одним интересным физическим явлением при полете сверхзвуковых самолетов — это визуальное опережение летательных аппаратов их собственного звука. Звук наблюдается с некоторым опозданием за хвостом самолета.

Число Маха в авиации

Теорию с подтверждающим экспериментальным процессом образования ударных волн был продемонстрировал еще задолго до первого полета сверхзвукового самолета австрийский физик Эрнст Мах (1838 — 1916). Величину, выражающую отношение скорости летательного аппарата к скорости звуковой волны называют сегодня в честь ученого - Махом.

Как мы уже оговорились в водной части, на скорость звука в воздушной среде влияют такие метеорологические условия как давление, влажность и температура воздуха. Температура в зависимости от высоты полета самолета меняется от +50 на поверхностях Земли до -50 в слоях стратосферы. Поэтому на разных высотах для достижения сверхзвуковых скоростей обязательно учитываются местные метеоусловия.

Для сравнения над нулевой отметкой уровня моря скорость звука составляет 1240 км/ч, тогда как на высоте более 13 тыс. км. эта скорость снижается до 1060 км/ч.

Если принять соотношение скорости летательного аппарата к скорости звукова за М, то при значении М>1, это будет всегда сверхсвуковая скорость.

Самолеты с дозвуковой скоростью имеют значение М = 0.8. Вилка значений Маха от 0,8 до 1,2 задают околозвуковую скорость. А вот гиперзвуковые летательные аппараты имеют число Маха более 5. Из известных военных российских сверхзвуковых самолетов можно выделить СУ-27 — истребитель перехватчик, Ту-22М — бомбардировщик ракетоносец. Из американских известен SR-71 — самолет разведчик. Первым сверхзвуковым самолетом в рамках серийного производства стал американский истребитель F-100 в 1953 году.

Модель космического челнока во время испытаний в сверхзвуковой аэродинамической трубе. Специальная методика теневой фотографии позволила запечатлеть, где возникают ударные волны.

Первый сверхзвуковой самолет

За 30 лет с 1940 по 1970 скорость самолетов выросла в несколько раз. Первый перелет с околозвуковой скоростью был совершен 14 октября 1947 года на американском самолете Bell XS-1 в штате Калифорния над авиабазой.

Пилотировал реактивный самолет Bell XS-1 капитан американских ВВС Чак Йиге. Ему удалось разогнать аппарат до скорости 1066 км/ч. В ходе данного испытания был получен существенный срез данных для дальнейшего толчка в развитии сверхзвуковых самолетов.

Конструкция крыльев сверхзвуковых самолетов

Подъемная сила и лобовое сопротивление со скоростью увеличиваются, поэтому крылья становятся меньше, тоньше и приобретали стреловидную форму, улучшая обтекаемость.

У самолетов, приспособленных к сверхзвуковым полетам крылья в отличии от обычных дозвуковых самолетов вытягивались под острым углом назад, напоминая наконечник стрелы. Внешне крылья образовывали треугольник в единой плоскости с его остроугольной вершиной в передней части самолета. Треугольная геометрия крыла позволяла управлять самолетом предсказуемо в момент перехода звукового барьера и как следствие избежать вибраций.

Существуют модели, в которых применялись крылья с изменяемой геометрией. В момент взлета и посадки угол крыла относительно самолета равнялся 90 градусам, то есть перпендикулярен. Это необходимо для создания максимальной подъемной силы в момент взлета и посадки, то есть в тот момент когда скорость снижается и подъемная сила при остром угле при неизменной геометрии достигает своего критического минимума. С ростом скорости геометрия крыла изменяется до максимально острого угла у основания треугольника.

Самолеты-рекордсмены

В ходе гонки за рекордными скоростями в небе самолетом Bell-X15, на борту которого был установлен ракетный двигатель, была достигнута рекордная скорость 6,72 или 7200 км/ч в 1967 году. Этот рекорд не могли побить спустя долгое время.

И только в 2004 году беспилотный гиперзвуковой летательный аппарат NASA X-43, который разрабатывался для полета с гиперзвуковой скоростью, удалось в рамках его третьего полета разогнать до рекордных 11 850 км/ч.

Первые два полета закончились неудачно. На сегодняшний день эта самая высокая цифра скорости самолета.

Испытания сверхзвукового автомобиля

На этом реактивном сверхзвуковом автомобиле Thrust SSC установлены 2 авиационных двигателя. В 1997 году он стал первым наземным транспортным средством, преодолевшим звуковой барьер. Как и при сверхзвуковом полете, перед автомобилем возникает ударная волна.

Приближение автомобиля беззвучно, потому, что весь создаваемый шум сосредоточен в идущей за ним ударной волне.

Сверхзвуковые самолеты в гражданской авиации

Что касается гражданских сверхзвуковых самолетов, то всего известны 2 серийных самолета, выполняющих регулярные рейсы: советский ТУ-144 и французский Concorde. ТУ-144 осуществил свой дебютный вылет в 1968 году. Данные аппараты были предназначены для дальних трансатлантических перелетов. Время перелета были значительно сокращены в сравнении с дозвуковыми аппаратами за счет увеличения высоты перелета до 18 км, где самолет использовал незагруженный воздушный коридор и миновал облачную загрузку.

Первый гражданский сверхзвуковой самолет СССР ТУ-144 завершил свои полеты в 1978 году по причине их нерентабельности. Окончательную точку в решении об отказе эксплуатировать в регулярных рейсах было принято из-за катастрофы опытного экземпляра ТУ-144Д во время его испытания. Хотя стоит отметить, что за рамками гражданской авиации самолет ТУ-144 продолжали эксплуатировать для срочной почтовой и грузовой доставки с Москвы в Хабаровск вплоть до 1991 года.

Тем временем несмотря на дорогие билеты, французский сверхзвуковой самолет «Конкорд» продолжал оказывать услуги аваиарейсов для своих европейских клиентов до 2003 года. Но в конце концов, несмотря на более богатый социальный слой европейских жителей, вопрос нерентабельности был все равно неминуем.

 

 

Это интересно: