→ Краткая история реактивной гражданской авиации. Реактивные самолеты История реактивной авиации

Краткая история реактивной гражданской авиации. Реактивные самолеты История реактивной авиации

В наше время вряд ли остался хоть один человек, не знающий о реактивных самолетах и не летавший на них. Но мало кому известно, какой тяжелый путь инженерам со всего мира пришлось пройти, чтобы достичь таких результатов. Еще меньше тех, кто точно знает, что представляют собой современные реактивные воздушные суда, как они работают. Реактивные самолеты – это усовершенствованные, мощнейшие пассажирские или военные суда, работающие посредством воздушно-реактивного двигателя. Главная особенность реактивного самолета – это его невероятная скорость, выгодно выделяющая двигательный механизм от устаревшего винтового.

На английском языке слово «реактивный» звучит как «jet». Услышав его, сразу появляются мысли, связанные с какой-либо реакцией, и это вовсе не окисление топлива, ведь такая система движения приемлема для автомобилей с карбюраторами. Что касается авиалайнеров и военных самолетов, то принцип их работы чем-то напоминает взлет ракеты: физическое тело реагирует на выбрасываемую мощную струю газа, в результате чего оно движется в противоположную сторону. Это и есть основной принцип работы реактивных самолетов. Также важную роль в работоспособности механизма, приводящего столь большую машину в движение, играют аэродинамические свойства, крыльевой профиль, разновидность двигателя (пульсирующий, прямоточный, жидкостный и т.д.), схема.

Первые попытки создания реактивного самолета

Поиск более мощного и скоростного двигателя для военных, а в дальнейшем и гражданских самолетов начался еще в далеком 1910 году. За основу были взяты ракетные исследования прошлых веков, где подробно рассказывалось о применении пороховых ускорителей, способных значительно сократить длину форсажа и разбега. Главным конструктором стал румынский инженер Анри Коанда, создавший летательный аппарат, работающий на основе поршневого двигателя.

Что же отличало первый реактивный самолет 1910 года от стандартных моделей тех времен? Главным отличием было наличие лопастного компрессора, отвечающего за приведение летательного аппарата в движение. Аэроплан «Coanda» был хоть и первой, но очень неудачной попыткой создать самолет с реактивным двигателем. В ходе дальнейших испытаний аппарат сгорел, что подтвердило неработоспособность конструкции.

Последующие изучения выявили возможные причины неудачи:

  1. Неудачное расположение двигателя. Из-за того, что он располагался в передней части конструкции, опасность жизни пилота была весьма велика, так как выхлопные газы попросту не дали бы человеку нормально дышать и вызвали бы удушье;
  2. Выделяющееся пламя попадало прямо на хвостовую часть аэроплана, что могло привести к возгоранию этой зоны, пожару и падению летательного аппарата.

Несмотря на полное фиаско, Анри Коанда утверждал, что именно ему принадлежат первые удачные задумки, касающиеся реактивного двигателя для самолетов. По факту же первые удачные модели были созданы непосредственно перед началом Второй Мировой Войны, в 30-40 годах XX века. Сделав работу над ошибками, инженеры из Германии, США, Англии, СССР создали летательные аппараты, которые никак не угрожали жизни пилота, а сама конструкция была выполнена из жаропрочной стали, благодаря чему корпус был надежно защищен от каких-либо разрушений.

Дополн ительная информация. Первооткрывателем реактивного двигателя по праву можно назвать инженера из Англии Фрэнка Уитла, который предложил первые идеи и получил на них свой патент в конце XIX века.

Начало создания самолетов в СССР

Впервые о разработке реактивного движка в России заговорили в начале XX столетия. Теорию о создании мощных аэропланов, способных развить сверхзвуковую скорость выдвинул известный российский ученый К.Э. Циолковский. Воплотить эту задумку в жизнь удалось талантливому конструктору А.М Люльке. Именно он спроектировал первый советский реактивный самолет, работающий посредством турбореактивного движка.

Инженер поведал о том, что данная конструкция может развить невиданную для тех времен скорость до 900 км/ч. Несмотря на фантастичность предложения и неопытность молодого конструктора, инженеры СССР взялись за проект. Первый аэроплан был уже практически готов, но в 1941 году начались военные действия, вся команда конструкторов, в том числе и Архип Михайлович, были вынуждены начать работу над танковыми двигателями. Само же бюро со всеми авиационными наработками было вывезено вглубь СССР.

К счастью, А.М.Люлька был не единственным инженером, мечтавшим создать самолет с реактивным авиационным двигателем. Новые идеи о создании истребителя-перехватчика, полет которого обеспечивался бы жидкостным типом движка, предложили конструкторы А.Я.Березняк и А.М.Исаев, работающие в инженерском бюро имени Болховитинова. Проект был одобрен, поэтому разработчики вскоре стали работать над созданием истребителя «БИ-1», который, несмотря на войну, был построен. Первые испытания над ракетным истребителем начались 15 мая 1942 года, за его штурвалом был смелый и отважный летчик-испытатель Е.Я.Бахчиванджи. Тесты удались, но продолжались еще на протяжении последующего года. Продемонстрировав максимальную скорость в 800 км/ч, летательный аппарат стал неуправляемым и потерпел крушение. Произошло это в конце 1943 года. Пилоту выжить не удалось, а испытания были остановлены. В это время страны третьего рейха активно занимались наработками и подняли в воздух не одно воздушно-реактивное судно, поэтому СССР на воздушном фронте сильно проигрывал и оказался совсем неподготовленным.

Германия – страна первых реактивных аппаратов

Первые реактивные самолеты были разработаны немецкими инженерами. Создание проектов и производство проводились тайно на замаскированных заводах, расположенных в глубоких лесных чащах, поэтому такое открытие стало для мира, в некотором роде, неожиданностью. Гитлер мечтал стать мировым правителем, поэтому подключал лучших конструкторов Германии для создания мощнейшего оружия, в том числе и скоростных реактивных самолетов. Были, конечно, как провалы, так и удачные проекты.

Самым успешным из них стал первый немецкий реактивный самолет «Messer-schmitt Ме-262» (Мессершмит-262), который называли также «Штурмфогель».

Этот летательный аппарат стал первым в мире, который удачно прошел все испытания, свободно поднялся в воздух и начал после этого выпускаться серийно. Великий «сокрушитель врагов третьего рейха » имел следующие особенности:

  • Аппарат имел два турбореактивных двигателя;
  • В носовой части авиалайнера располагался радиолокатор;
  • Максимальная скорость самолета достигала 900 км/час, при этом в инструкции указывалось, что доводить суда до таких скоростей крайне нежелательно, так как терялся контроль над управлением, и машина начинала совершать крутые пике в воздухе.

Благодаря всем этим показателям и конструктивным особенностям первый реактивный летательный аппарат «Мессершмит-262» выступал эффективным средством борьбы против самолетов союзников, высотными «Б-17», получившими прозвище «летающие крепости». Штурмофогели были более скоростными, поэтому вели «свободную охоту» на самолеты СССР, которые оснащались поршневыми движками.

Интересный факт. Адольф Гитлер был настолько фанатичен в своем желании всемирного господства, что собственными руками снизил эффективность самолета «Messer-schmitt Ме-262». Дело в том, что конструкция изначально проектировалась как истребитель, но по указанию правителя Германии , он был переоборудован в бомбардировщик, из-за этого мощность двигателя не была раскрыта в полной мере.

Такой ход действий совершенно не устраивал советские власти, поэтому они начали работать над созданием новых моделей самолетов, которые могли бы конкурировать с немецкими аппаратами. За работу принялись самые талантливые инженеры А.И.Микоян и П.О.Сухой. Основная задумка заключалась в добавлении дополнительного поршневого мотора К.В.Холщевникова, который придавал бы в нужный момент истребителю ускорение. Движок не был слишком мощным, поэтому работал не более 5 минут, из-за этого его функцией было – ускорение, а не постоянная работа на протяжении всего полета.

Новые творения российского самолетостроения не смогли помочь разрешению войны. Несмотря на это сверхмощные немецкие самолеты «Ме-262» не помогли Гитлеру обернуть ход военных событий в свою пользу. Советские летчики продемонстрировали свое мастерство и победу над врагом даже с обычными поршневыми судами. В послевоенное время российскими конструкторами были созданы следующие реактивные самолеты СССР , ставшие в дальнейшем прототипами современных авиалайнеров:

  • «И-250», более известный как легендарный «МиГ-13», – истребитель, над которым работал А.И.Микоян. Первый полет был совершен в марте 1945 года, на тот момент машина показала рекордный скоростной показатель, достигший 820 км/час;

  • Немного позднее, а именно в апреле 1945 года, впервые в небо поднялся реактивный самолет, поднимающийся и поддерживающий полет за счет воздушно-реактивного мотокомпрессорного и поршневого двигателя, который располагался в хвостовой части конструкции, П.О.Сухого «Су-5». Показатели скорости были не ниже, чем у его предшественника и превышали 800 км/час;
  • Новаторством инженерии и самолетостроения 1945 года стал жидко-реактивный мотор «РД-1». Впервые он был применен в модели самолета конструктора П.О.Сухого – «Су-7», который был оснащен также и поршневым двигателем, выполняющим основную толкательную, движущую функцию. Испытателем нового летательного аппарата стал Г.Комаров. При первом испытании удалось отметить, что дополнительный мотор увеличивал средний скоростной показатель на 115 км/час – это было большим достижением. Несмотря на хороший результат, двигатель «РД-1» стал настоящей проблемой для советских авиастроителей. Аналогичные самолеты, оснащенные данной моделью жидко-реактивного движка, – «ЯК-3» и «Ла-7Р», над которыми работали инженеры С.А.Лавочкин и А.С.Яковлев, потерпели крушения во время испытания из-за постоянно выходящего из строя мотора;
  • После окончания войны и поражения фашистской Германии Советскому Союзу в качестве трофеев достались немецкие самолеты с реактивными двигателями «JUMO-004» и «BMW-003». Тогда конструкторы поняли, что действительно находились на несколько шагов позади. Среди инженеров моторы получили название «РД-10» и «РД-20», на их основе создавались первые авиационные реактивные двигатели, над которыми работали А.М.Люлька, А.А.Микулин, В.Я.Климов. В это же время П.О.Сухой занимался разработкой мощного двухмоторного самолета, укомплектованного двумя моторами типа «РД-10», располагающимися прямо под крыльями летательного аппарата. Реактивный истребитель-перехватчик получил название «СУ-9». Недостатком такого расположения моторов можно считать сильное лобовое сопротивление при полете. К преимуществам – отличный доступ к движкам, благодаря чему можно было запросто подобраться к механизму и починить поломку. Конструктивной особенностью данной модели самолета являлось наличие стартовых пороховых ускорителей для взлета, тормозных парашютов для посадки, управляемых ракет типа «водзух-воздух» и бустера-усилителя, облегчающего процесс управления и увеличивающего маневренность аппарата. Первый полет «Су-9» был осуществлен в ноябре 1946 года, но к серийному производству дело так и не подошло;

  • В апреле 1946 года проходил воздушный парад в городе Тушино. На нем были представлены новые летательные аппараты от авиационных конструкторских бюро Микояна и Яковлева. Реактивные самолеты «МиГ-9» и «Як-15» сразу же были запущены в серию.

Фактически, Сухой «проиграл» конкурентам. Хотя, проигрышем это назвать тяжело, ведь его модель истребителя была признана, а за это время он смог практически закончить работу над новым, более современным проектом – «СУ-11», который стал настоящей легендой истории самолетостроения и прототипом мощных авиалайнеров современности.

Интересный ф акт. На самом деле, реактивный самолет «СУ-9» тяжело было назвать простым истребителем. Конструкторы между собой прозвали его «тяжелым», потому что пушечное и бомбовое вооружение летательного аппарата было на довольно высоком уровне. Принято считать, что именно «СУ-9» был прототипом современных истребителей-бомбардировщиков. За все время было изготовлено приблизительно 1100 единиц техники, при этом она не экспортировалась. Не раз легендарный «Сухой Девятый» использовался для перехвата в воздухе разведывател ьных самолетов. Впервые это произошло в 1960 году, когда в воздушное пространство СССР ворвались аэропланы « LockheedU -2».

Первые мировые прототипы

Разработкой, тестированием новых авиалайнеров и их производством занимались не только немцы и советские конструкторы. Инженерами США, Италии, Японии, Великобритании также было создано немало успешных проектов, о которых нельзя не упомянуть. К числу первых наработок с различными типами двигателей можно отнести:

  • «Не-178» – немецкий самолет с турбореактивной силовой установкой, поднявшийся в воздух в августе 1939 года;
  • «GlosterE. 28/39» – летательный аппарат родом из Великобритании с мотором турбореактивного типа, впервые поднялся в небо в 1941 году;
  • «Не-176» – истребитель, созданный в Германии с применением ракетного двигателя, осуществил свой первый полет в июле 1939 года;
  • «БИ-2» – первый советский летательный аппарат, который приводился в движение посредством ракетной силовой установки;
  • «CampiniN.1» – реактивный самолет, созданный в Италии, ставший первой попыткой итальянских конструкторов отойти от поршневого аналога. Но в механизме что-то пошло не так, поэтому лайнер не мог похвастаться большой скоростью (всего лишь 375 км/час). Запуск был произведен в августе 1940 года;
  • «Ока» с мотором Tsu-11 – японский истребитель-бомба, так называемый одноразовый летательный аппарат с пилотом-камикадзе на борту;
  • «BellP-59» – американский авиалайнер с двумя реактивными двигателями ракетного типа. Производство стало серийным после первого полета в воздухе 1942 года и долгих испытаний;

  • «GlosterMeteor» – воздушно-реактивный истребитель, изготовленный в Великобритании в 1943 году; сыграл значительную роль во время Второй Мировой Войны, а после ее окончания выполнял задачу перехватчика немецких крылатых ракет Фау-1;
  • «LockheedF-80» – реактивный летательный аппарат, произведенный в США с использованием мотора типа AllisonJ Эти самолеты не раз участвовали в Японско-Корейской войне;
  • «B-45 Tornado» – прототип современных американских бомбардировщиков «B-52», созданный в 1947 году;
  • «МиГ-15» – последователь признанного реактивного истребителя «МиГ-9», который активно участвовал в военном конфликте Кореи, был произведен в декабре 1947 г.;
  • «Ту-144» – первый советский сверхзвуковой воздушно-реактивный пассажирский самолет, который прославился серией катастроф и был снят с производства. Всего было выпущено 16 экземпляров.

Этот список можно продолжать бесконечно, с каждым годом авиалайнеры совершенствуются, ведь конструкторы со всего мира работают над тем, чтобы создавать летательные аппараты нового поколения, способные летать со скоростью звука.

Несколько интересных фактов

Сейчас существуют лайнеры, способные вмещать в себе большое количество пассажиров и грузов, обладающие огромными размерами и невообразимой скоростью свыше 3000 км/час, оборудованные современной боевой экипировкой. Но есть несколько поистине удивительных конструкций; в число реактив ных самолетов-рекордсменов входят:

  1. «AirbusA380» – самый вместительный аппарат, способный принять на своем борту 853 пассажира, что обеспечено двухпалубной конструкцией. Он же по совместительству один из роскошнейших и дорогостоящих авиалайнеров современности. Авиакомпания «Emirates Airline» предлагает клиентам многочисленные удобства, здесь есть турецкая баня, VIP-апартаменты и каюты, спальные комнаты, бары и лифт. Но такие опции есть не во всех аппаратах, все зависит от авиакомпании.

  1. «Boeing 747» – более 35 лет считался наиболее пассажировместительным двухэтажным лайнером и мог расположить 524 пассажира;
  2. «АН-225 Мрия» – грузовой летательный аппарат, который может похвастаться грузоподъемностью в 250 тонн;
  3. «LockheedSR-71» – реактивный самолет, достигающий во время полета скорости 3529 км/час.

Видео

Благодаря современным инновационным разработкам пассажиры могут добраться из одной точки света в другую всего за несколько часов, быстро доставляются хрупкие грузы, требующие оперативной транспортировки, обеспечивается надежная военная база. Авиационные исследования не стоят на месте, потому как реактивные самолеты – это основа стремительно развивающейся современной авиации. Сейчас проектируется несколько западных и российских пилотируемых, пассажирских, беспилотных авиалайнеров с реактивными двигателями, выпуск которых запланирован на ближайшие несколько лет. К российским инновационным разработкам будущего можно отнести истребитель 5-го поколения ПАК ФА «Т-50», первые экземпляры которого поступят в войска предположительно в конце 2017 или начале 2018 года после испытания нового реактивного двигателя.

Всегда трудно быть первым, но интересно

Утром 27 марта 1943 года первый советский реактивный истребитель «БИ-1» взлетел с аэродрома НИИ ВВС Кольцово в Свердловской области. Проходил седьмой по счету испытательный полет на достижение максимальной скорости. Достигнув двухкилометровой высоты и набрав скорость около 800 км/ч, самолет на 78-й секунде после выработки топлива неожиданно перешел в пике и столкнулся с землей. Сидевший за штурвалом опытный летчик-испытатель Г. Я. Бахчиванджи погиб. Эта катастрофа стала важным этапом в развитии самолетов с жидкостными ракетными двигателями в СССР, но хотя работы по ним и продолжались до конца 1940-х годов, данное направление развития авиации оказалось тупиковым. Тем не менее эти первые, хотя и не слишком удачные шаги оказали серьезное влияние на всю дальнейшую историю послевоенного развития советского авиа- и ракетостроения.

«За эрой аэропланов винтовых должна следовать эра аэропланов реактивных…» – эти слова основоположника реактивной техники К. Э. Циолковского стали получать реальное воплощение уже в середине 1930-х годов ХХ века. К этому моменту стало ясно, что дальнейшее значительное увеличение скорости полета самолетов за счет возрастания мощности поршневых моторов и более совершенной аэродинамической формы практически невозможно. На самолетах должны были устанавливаться моторы, мощность которых не могла быть уже увеличена без чрезмерного возрастания массы двигателя. Так, для увеличения скорости полета истребителя с 650 до 1000 км/ч необходимо было мощность поршневого мотора увеличить в 6 (!) раз.

Было очевидно, что на смену поршневому двигателю должен был прийти реактивный, который, имея меньшие поперечные размеры, позволял бы достигать больших скоростей, давая большую тягу на единицу веса.

Реактивные двигатели разделяются на два основных класса: воздушно-реактивные, которые используют энергию окисления горючего кислородом воздуха, забираемого из атмосферы, и ракетные двигатели, содержащие все компоненты рабочего тела на борту и способные работать в любой среде, в том числе и в безвоздушной. К первому типу относятся турбореактивные (ТРД), пульсирующие воздушно-реактивные (ПуВРД) и прямоточные воздушно-реактивные (ПВРД), а ко второму - жидкостные ракетные (ЖРД) и твердотопливные ракетные (ТТРД) двигатели.

Первые образцы реактивной техники появились в странах, где традиции в области развития науки и техники и уровень авиационной промышленности были чрезвычайно высоки. Это, в первую очередь, Германия, США, а также Англия, Италия. В 1930 г. проект первого ТРД запатентовал англичанин Фрэнк Уиттл, затем первую рабочую модель двигателя собрал в 1935 г. в Германии Ганс фон Охайн, а в 1937-м француз Рене Ледюк получил правительственный заказ на создание ПВРД.

В СССР же практическая работа над «реактивной» тематикой велась главным образом в направлении жидкостных ракетных двигателей. Основоположником ракетного двигателестроения в СССР был В. П. Глушко. Он в 1930 г., тогда сотрудник Газодинамической лаборатории (ГДЛ) в Ленинграде, являвшейся в то время единственным КБ в мире по разработке твердотопливных ракет, создал первый отечественный ЖРД ОРМ-1. А в Москве в 1931–1933 гг. ученый и конструктор Группы изучения реактивного движения (ГИРД) Ф. Л. Цандер разработал ЖРД ОР-1 и ОР- 2.

Новый мощный импульс развитию реактивной техники в СССР придало назначение М. Н. Тухачевского в 1931 г. на пост заместителя наркома обороны и начальника вооружения РККА. Именно он настоял на принятии в 1932 г. постановления Совнаркома «О разработке паротурбинных и реактивных двигателей, а также самолетов на реактивной тяге…». Начатые после этого работы в Харьковском авиационном институте позволили только к 1941 г. создать рабочую модель первого советского ТРД конструкции А. М. Люльки и способствовали старту 17 августа 1933 г. первой в СССР жидкостной ракеты ГИРД-09, которая достигла высоты 400 м.

Но отсутствие более ощутимых результатов подтолкнуло Тухачевского в сентябре 1933 г. к объединению ГДЛ и ГИРД в единый Реактивный научно-исследовательский институт (РНИИ) во главе с ленинградцем, военным инженером 1 ранга И. Т. Клейменовым. Его заместителем был назначен будущий Главный конструктор космической программы, москвич С. П. Королев, который через два года в 1935 г. был назначен начальником отдела ракетных летательных аппаратов. И хотя РНИИ подчинялся управлению боеприпасов Наркомата тяжелой промышленности и основной его темой была разработка ракетных снарядов (будущей «Катюши»), Королеву удалось вместе с Глушко рассчитать самые выгодные конструктивные схемы аппаратов, типы двигателей и систем управления, виды топлива и материалов. В результате в его отделе к 1938 г. была разработана экспериментальная система управляемого ракетного оружия, включающая проекты жидкостных крылатой «212» и баллистической «204» ракет дальнего действия с гироскопическим управлением, авиационных ракет для стрельбы по воздушным и наземным целям, зенитных твердотопливных ракет с наведением по световому и радиолучу.

Стремясь получить поддержку военного руководства и в разработке высотного ракетоплана «218», Королев обосновал концепцию ракетного истребителя-перехватчика, способного за несколько минут достигать большой высоты и атаковать самолеты, прорвавшиеся к защищаемому объекту.

Но 30 июня 1939 г. немецкий пилот Эрих Варзиц поднял в воздух первый в мире реактивный самолет с ЖРД конструктора Гельмута Вальтера «Хейнкель» He-176, достигнув скорости в 700 км/ч, а через два месяца и первый в мире реактивный самолет с ТРД «Хейнкель» He-178, оснащенный двигателем Ганса фон Охайна, «HeS-3 B» с тягой 510 кг и скоростью 750 км/ч.

В мае 1941 г. совершил свой первый полет британский «Глостер Пионер» Е.28/29 с ТРД «Уиттл» W-1 конструктора Фрэнка Уиттла.

Таким образом, лидером в реактивной гонке становилась нацистская Германия, которая кроме авиационных программ начала осуществлять и ракетную программу под руководством Вернера фон Брауна на секретном полигоне в Пенемюнде.

В 1938 г. РНИИ был переименован в НИИ-3, теперь «королевский» ракетоплан «218–1» стал обозначаться «РП- 318–1». Новые ведущие конструкторы инженеры А. Щербаков, А. Палло заменили ЖРД ОРМ-65 В. П. Глушко на азотно-кислотно-керосиновый двигатель «РДА-1–150» конструкции Л. С. Душкина.

И вот почти после года испытаний в феврале 1940 г. состоялся первый полет «РП-318–1» на буксире за самолетом «Р 5». Летчик-испытатель?В. П. Федоров на высоте 2800 м отцепил буксировочный трос и запустил ракетный двигатель. За ракетопланом появилось небольшое облачко от зажигательного пиропатрона, потом бурый дым, затем огненная струя длиной около метра. «РП-318–1», развив максимальную скорость - всего лишь в 165 км/ч, перешел в полет с набором высоты.

Это скромное достижение все же позволило СССР вступить в члены довоенного «реактивного клуба» ведущих авиационных держав.

Успехи немецких конструкторов не прошли незамеченными для советского руководства. В июле 1940 г. Комитет обороны при Совнаркоме принял постановление, определившее создание первых отечественных самолетов с реактивными двигателями. В постановлении, в частности, предусматривалось решение вопросов «о применении реактивных двигателей большой мощности для сверхскоростных стратосферных полетов».

Массированные налеты люфтваффе на британские города и отсутствие в Советском Союзе достаточного количества радиолокационных станций выявили необходимость создания истребителя-перехватчика для прикрытия особо важных объектов, над проектом которого с весны 1941 г. начали работать молодые инженеры А. Я. Березняк и А. М. Исаев из ОКБ конструктора В. Ф. Болховитинова. Концепция их ракетного перехватчика с двигателем Душкина или «ближнего истребителя» опиралась на предложение Королева, выдвинутое еще в 1938 г.

«Ближний истребитель» при появлении самолета противника должен был быстро взлететь и, обладая высокой скороподъемностью и скоростью, догнать и уничтожить врага в первой атаке, затем после выработки топлива, используя запас высоты и скорости, спланировать на посадку.

Проект отличался необычайной простотой и дешевизной - вся конструкция должна была быть цельнодеревянной из клееной фанеры. Из металла изготовлялись рама двигателя, защита пилота и шасси, которые убирались под воздействием сжатого воздуха.

С началом войны Болховитинов привлек к работе над самолетом все ОКБ. В июле 1941 г. эскизный проект с пояснительной запиской был отправлен Сталину, и в августе Государственный комитет обороны принял решение о срочной постройке перехватчика, который был необходим частям ПВО Москвы. Согласно приказу по Наркомату авиапромышленности на изготовление машины отводилось 35 дней.

Самолет, получивший название «БИ» (ближний истребитель или, как в дальнейшем интерпретировали журналисты, «Березняк - Исаев») строили почти без детальных рабочих чертежей, вычерчивая на фанере его части в натуральную величину. Обшивка фюзеляжа выклеивалась на болванке из шпона, затем крепилась к каркасу. Киль выполнялся заодно с фюзеляжем, как и тонкое деревянное крыло кессонной конструкции, и обтягивался полотном. Деревянным был даже лафет для двух 20-мм пушек ШВАК с боезапасом из 90 снарядов. ЖРД Д-1 А-1100 устанавливался в хвостовой части фюзеляжа. Двигатель расходовал 6 кг керосина и кислоты в секунду. Общий запас топлива на борту самолета, равный 705 кг, обеспечивал работу двигателя в течение почти 2 мин. Расчетная взлетная масса самолета «БИ» составляла 1650 кг при массе пустого 805 кг.

В целях сокращения времени создания перехватчика по требованию заместителя наркома авиационной промышленности по опытному самолетостроению А. С. Яковлева планер самолета «БИ» был исследован в натурной аэродинамической трубе ЦАГИ, a на аэродроме летчик-испытатель Б. Н. Кудрин начал пробежки и подлеты на буксире. С разработкой силовой установки пришлось изрядно повозиться, поскольку азотная кислота разъедала баки и проводку и оказывала вредное воздействие на человека.

Однако все работы были прерваны в связи с эвакуацией ОКБ на Урал в поселок Белимбай в октябре 1941 г. Там с целью отладки работы систем ЖРД смонтировали наземный стенд - фюзеляж «БИ» с камерой сгорания, баками и трубопроводами. К весне 1942 г. программа наземных испытаний была завершена.

Летные испытания уникального истребителя поручили капитану Бахчиванджи, который совершил 65 боевых вылетов на фронте и сбил 5 немецких самолетов. Он предварительно освоил управление системами на стенде.

Утро 15 мая 1942 г. навсегда вошло в историю отечественной космонавтики и авиации, взлетом с грунта первого советского самолета с жидкостным реактивным двигателем. Полет, который продолжался 3 мин 9 сек на скорости 400 км/ч и при скороподъемности - 23 м/с, произвел сильное впечатление на всех присутствующих. Вот как об этом вспоминал Болховитинов в 1962 г.: «Для нас, стоявших на земле, этот взлет был необычным. Непривычно быстро набирая скорость, самолет через 10 секунд оторвался от земли и через 30 секунд скрылся из глаз. Только пламя двигателя говорило о том, где он находится. Так прошло несколько минут. Не скрою, у меня затряслись поджилки».

Члены государственной комиссии отметили в официальном акте, что «взлет и полет самолета «БИ-1» с ракетным двигателем, впервые примененным в качестве основного двигателя самолета, доказал возможность практического осуществления полета на новом принципе, что открывает новое направление развития авиации». Летчик-испытатель отмечал, что полет на самолете «БИ» в сравнении с обычными типами самолетов исключительно приятен, а по легкости управления самолет превосходит другие истребители.

Через день после испытаний в Билимбае была устроена торжественная встреча и митинг. Над столом президиума висел плакат: «Привет капитану Бахчиванджи, летчику, совершившему полет в новое!».

Вскоре последовало решение ГКО о постройке серии из 20 самолетов «БИ- ВС», где в дополнение к двум пушкам перед кабиной летчика устанавливалась бомбовая кассета, в которой размещалось десять мелких противосамолетных бомб массой по 2,5 кг.

Всего на истребителе «БИ» было совершено 7 испытательных полетов, каждый из которых фиксировал лучшие летные показатели самолета. Полеты проходили без летных происшествий, лишь при посадках случались незначительные повреждения шасси.

Но 27 марта 1943 г. при разгоне до скорости 800 км/ч на высоте 2000 м третий опытный экземпляр самопроизвольно перешел в пикирование и врезался в землю неподалеку от аэродрома. Комиссия, расследовавшая обстоятельства катастрофы и гибели летчика-испытателя Бахчиванджи, не смогла установить причины затягивания самолета в пике, отмечая, что еще не изучены явления, происходящие при скоростях полета порядка 800 –1000 км/ч.

Катастрофа больно ударилa по репутации ОКБ Болховитинова - все недостроенные перехватчики «БИ-ВС» были уничтожены. И хотя позднее в 1943–1944 гг. проектировалась модификация «БИ-7» с прямоточными воздушно-реактивными двигателями на концах крыла, а в январе 1945 г. летчик Б. Н. Кудрин выполнил последние два полета на «БИ-1», все работы по самолету были прекращены.

Наиболее успешно была реализована концепция ракетного истребителя в Германии, где с января 1939 г. в специальном «Отделе L» фирмы «Мессершмитт», куда из немецкого планерного института перешел профессор А. Липпиш со своими сотрудниками, шла работа над «проектом Х» - «объектовым» перехватчиком «Me-163» «Комет» с ЖРД, работающим на смеси гидразина, метанола и воды. Это был самолет нетрадиционной «безхвостой» схемы, который ради максимального снижения веса взлетал со специальной тележки, а садился на выдвигаемую из фюзеляжа лыжу. Первый полет на максимальной тяге летчик-испытатель Дитмар выполнил в августе 1941 г., а уже в октябре на нем впервые в истории была преодолена отметка в 1000 км/ч. Потребовалось более двух лет испытаний и доводки, прежде чем «Ме-163» был запущен в серию. Он стал первым самолетом с ЖРД, участвовавшим в боях с мая 1944 г. И хотя до февраля 1945 г. было выпущено более 300 перехватчиков, в строю находилось не более 80 боеготовых самолетов.

Боевое применение истребителей «Ме-163» показало несостоятельность концепции ракетного перехватчика. Из-за большой скорости сближения немецкие пилоты не успевали точно прицелиться, а ограниченный запас топлива (только на 8 минут полета) не давал возможности для второй атаки. После выработки топлива на планировании перехватчики становились легкой добычей американских истребителей - «Мустангов» и «Тандерболтов». До окончания боевых действий в Европе «Ме-163» сбили 9 самолетов противника, потеряв при этом 14 машин. Однако потери от аварий и катастроф в три раза превышали боевые. Ненадежность и малый радиус действия «Ме-163» способствовали тому, что руководством люфтваффе были запущены в серийное производство другие реактивные истребители «Ме- 262» и «Не-162».

Мессершмиитт Me.262 (нем. Messerschmitt Me.262 «Schwalbe» - «ласточка»)

Руководство советской же авиапромышленности в 1941–1943 гг. было сосредоточено на валовом выпуске максимального количества боевых самолетов и улучшении серийных образцов и не было заинтересовано в развитии перспективных работ по реактивной технике. Таким образом, катастрофа «БИ-1» поставила крест и на других проектах советских ракетных перехватчиков: «302» Андрея Костикова, «Р-114» Роберто Бартини и «РП» Королева.

Но сведения из Германии и стран союзников стали причиной того, что в феврале 1944 г. Государственный комитет обороны в своем постановлении указал на нетерпимое положение с развитием реактивной техники в стране. При этом все разработки в этом отношении сосредоточивались теперь во вновь организованном НИИ реактивной авиации, заместителем начальника которого был назначен Болховитинов. В этом институте были собраны ранее работавшие на различных предприятиях группы конструкторов реактивных двигателей во главе с М М. Бондарюком, В. П. Глушко, Л. С. Душкиным, А. М. Исаевым, A. M. Люлькой.

В мае 1944 г. ГКО принял еще одно постановление, наметившее широкую программу строительства реактивной авиационной техники. Этим документом предусматривалось создание модификаций Як-3, Ла-7 и Су-6 с ускорительным ЖРД, постройка «чисто ракетных» самолетов в ОКБ Яковлева и Поликарпова, экспериментального самолета Лавочкина с ТРД, а также истребителей с воздушно-реактивными моторокомпрессорными двигателями в ОКБ Микояна и Сухого. Для этого в конструкторском бюро Сухого был создан истребитель «Су-7», в котором совместно с поршневым мотором работал жидкостно-реактивный «РД-1», разработанный Глушко.

Полеты на «Су-7» начались в 1945 г. При включении «РД-1» скорость самолета увеличивалась в среднем на 115 км/ч, но испытания пришлось прекратить из-за частого выхода из строя реактивного двигателя. Похожая ситуация сложилась в конструкторских бюро Лавочкина и Яковлева. На одном из опытных самолетов «Ла-7 Р» ускоритель взорвался в полете, летчику-испытателю чудом удалось спастись. При испытании же «Як-3 РД» летчик-испытатель Виктор Расторгуев сумел достичь скорости в 782 км/ч, но при выполнении полета самолет взорвался, пилот погиб. Участившиеся катастрофы привели к тому, что испытания самолетов с «РД-1» были остановлены.

Одним из самых интересных проектов перехватчиков с ракетным двигателем стал проект сверхзвукового (!) истребителя «РМ-1» или «САМ-29», разработанного в конце 1944 г. незаслуженно забытым авиаконструктором А. С. Москалевым. Самолет выполнялся по схеме «летающее крыло» треугольной формы с овальными передними кромками, и при его разработке использовался предвоенный опыт создания самолетов «Сигма» и «Стрела». Проект «РМ-1» должен был иметь следующие характеристики: экипаж - 1 человек, силовая установка - «РД2 МЗВ» с тягой 1590 кгс, размах крыла - 8,1 м и его площадь - 28,0 м2, взлетный вес - 1600 кг, максимальная скорость - 2200 км/ч (и это в 1945 г.!). В ЦАГИ считали, что строительство и летные испытания «РМ- 1» - одно из наиболее перспективных направлений в будущем развитии советской авиации.

В ноябре 1945 г. приказ о постройке «РМ-1» был подписан министром А. И. Шахуриным, но в январе 1946 г. приказ о строительстве «РМ-1» отменен Яковлевым. Похожий Черановский БИЧ-26 (Че-24) сверхзвуковой проект истребителя на основе "летающего крыла" с рулем направления и крылом переменной стреловидности тоже был отменён.

Послевоенное знакомство с немецкими трофеями вскрыло значительное отставание в развитии отечественного реактивного самолетостроения. Чтобы сократить разрыв, было принято решение использовать немецкие двигатели «JUMO-004» и «BMW-003», а затем на их основе создать собственные. Эти двигатели получили наименование «РД-10» и «РД-20».

В 1945 г. одновременно с заданием построить истребитель «МиГ-9» с двумя «РД-20» перед ОКБ Микояна была поставлена задача разработать экспериментальный истребитель-перехватчик с ЖРД «РД-2 М-3 В» и скоростью 1000 км/ч. Самолет, получивший обозначение И-270 («Ж»), вскоре был построен, но его дальнейшие испытания не показали преимущества ракетного истребителя перед самолетом с ТРД, и работы по этой теме закрыли. В дальнейшем жидкостные реактивные двигатели в авиации стали применятся только лишь на опытных и экспериментальных самолетах или в качестве авиационных ускорителей.

«…Страшно вспомнить, как мало я тогда знал и понимал. Сегодня говорят: «открыватели», «первопроходцы». А мы в потемках шли и набивали здоровенные шишки. Ни специальной литературы, ни методики, ни налаженного эксперимента. Каменный век реактивной авиации. Были мы оба законченные лопухи!..» - так вспоминал о создании «БИ-1» Алексей Исаев. Да, действительно, из-за своего колоссального расхода топлива самолеты с жидкостно-ракетными двигателями не прижились в авиации, навсегда уступив место турбореактивным. Но сделав свои первые шаги в авиации, ЖРД прочно заняли свое место в ракетостроении.

В СССР в годы войны в этом отношении прорывом стало создание истребителя «БИ-1», и здесь особая заслуга Болховитинова, который взял под свое крыло и сумел привлечь к работе таких будущих светил советского ракетостроения и космонавтики, как: Василий Мишин, первый заместитель главного конструктора Королева, Николай Пилюгин, Борис Черток - главные конструкторы систем управления многих боевых ракет и носителей, Константин Бушуев - руководитель проекта «Союз» - «Аполлон», Александр Березняк - конструктор крылатых ракет, Алексей Исаев - разработчик ЖРД для ракет подводных лодок и космических аппаратов, Архип Люлька - автор и первый разработчик отечественных турбореактивных двигателей.

И-270 (по классификации НАТО - Type 11) - опытный истребитель ОКБ Микояна с ракетным двигателем.

Получила разгадку и тайна гибели Бахчиванджи. В 1943 г. в ЦАГИ в эксплуатацию была пущена аэродинамическая труба больших скоростей Т-106. В ней сразу же начали проводить широкие исследования моделей самолетов и их элементов при больших дозвуковых скоростях. Была испытана и модель самолета «БИ» для выявления причин катастрофы. По результатам испытаний стало ясно, что «БИ» разбился из-за особенностей обтекания прямого крыла и оперения на околозвуковых скоростях и возникающего при этом явления затягивания самолета в пикирование, преодолеть которое летчик не мог. Катастрофа 27 марта 1943 г. «БИ-1» стала первой, которая позволила советским авиаконструкторам решить проблему «волнового кризиса» путем установки стреловидного крыла на истребителе «МиГ-15». Спустя 30 лет в 1973 г. Бахчиванджи был посмертно удостоен звания Героя Советского Союза. Юрий Гагарин так отозвался о нем:

«…Без полетов Григория Бахчиванджи возможно бы не было и 12 апреля 1961 г. ». Кто мог знать, что ровно через 25 лет, 27 марта 1968 года, как и Бахчиванджи в возрасте 34 лет, Гагарин тоже погибнет в авиакатастрофе. Их действительно объединило главное - они были первыми.

Обязанность по сохранению России в одно из самых трудных за последние тысячу лет время история возложила на Иосифа Виссарионовича Сталина.

И он с честью с этой обязанностью справился, сохранив страну и все жившие на её территории народы, сделав Россию страной передовой науки и великой культуры. Он сделал это с минимально возможными потерями людей и материальных ценностей.

Самые влиятельные мировые силы не смогли в ленинское и сталинское времена сокрушить советское государство и истребить народы СССР. В России нашли себе могилу многие из интервентов Западных стран, их наёмников, в том числе Белых армий, враги России внутри страны и полчища войск объединённой Гитлером Европы.

Вот этого Запад не может простить ни Сталину, ни русскому народу, ни себе.

Эпоха 1930-х годов, военного и послевоенного времени притягивает к себе грандиозностью свершений, героизмом миллионов людей, величием державы под названием Советский Союз.

В послевоенное время жизнь народов СССР была сохранена благодаря огромным достижениям в области вооружений. За всё время своего предыдущего существования Россия никогда не имела таких могучих, победоносных Вооружённых Сил, которые с конца 1942 года превосходили вооружённые силы любой страны мира и оставались самыми сильными в мире до последнего дня существования Советского Союза.

Наша армия и наша военная промышленность с 1985 года уничтожаемая предателем М. С. Горбачёвым имела такой запас прочности, что и в 1991 году до разрушения СССР оставалась самой сильной. И сегодня мы живы благодаря тому, что при Горбачёве и Ельцине не успели уничтожить всё ядерное оружие, все ракеты, самолёты, орудия и танки, все заводы по производству оружия.


К сожалению немногие понимают, что безопасность народов России полностью соответствует состоянию её Вооружённых Сил. Но это хорошо понимали руководители Советского Союза.

СССР ни на минуту не сомневался в том, что только благодаря хорошо вооружённой, сильной армии наша страна свободна, независима и спокойна за жизнь и будущее своих детей.

Мощь нашей послевоенной армии мало кто может себе представить. Это была многомиллионная армия, работающая, как отлаженный механизм, которая способна была одолеть любого врага. Но армия не может успешно защитить свою страну, если не оснащена оружием по своим боевым качествам равным или превосходящим оружие противника.

Советское руководство это понимало, думало о будущем страны и, не смотря на колоссальные расходы, связанные с введением боевых действий с напавшим на нас врагом выделяло средства для создания оружия нового поколения. И не благодаря нашей разведке, а благодаря работе до войны, во время и после войны советских учёных и инженеров в СССР были созданы новые виды оружия.

Разведка наша, по-моему, отличалась недостаточными возможностями для предоставления достоверных сведений. До войны она «ловила немецкие утки» и называла одну за другой неверные даты нападения на СССР и настолько увязла в дезинформации, что потеряла доверие советского правительства.

Разведка не указала направления главных ударов немецких войск в 1941 году, а утверждала, что половина немецких войск предназначена для нападения на Англию, просмотрела переброску армии Манштейна из Севастополя под Ленинград, втрое занизила количество немецких войск, окружённых под Сталинградом, не смогла определить на какой фронт под Курском в 1943 году будет нанесён противником главный удар.

Даже в 1945 году, когда наши войска, сражаясь за каждый дом, продвигались к Рейхстагу, разведка не знала, что рядом в Имперской канцелярии находится бункер ставки Гитлера и поэтому специально для захвата Имперской канцелярии наши войска не были направлены и Гитлера ни живого, ни мёртвого не взяли.

И совсем не случайно, что о нахождении тайных представителей СССР в высших эшелонах власти гитлеровской Германии, например, Штирлица, написал человек, более тяготеющий к Западу, чем к России.

Миф о всесильности советской разведки был раздут Западом с целью обвинения Советского Союза в том, что он ни сам сконструировал новую военную технику, атомное оружие, а украл разработки Западных стран и особенно разработки Германии и США.

Эти мифы придумывались и придумываются для дискредитации советской науки, наших учёных, конструкторов, инженеров, рабочих, руководителей страны, научных коллективов и производственных предприятий. Без этих мифов США надо было бы признать, что русские в науках и производстве намного способнее богатых Западных стран, а социалистический строй эффективнее строя капиталистического.

Фактически, советские конструкторы и учёные уже во время войны работали над созданием принципиально новой военной техники. Одним из видов такой техники являлись самолёты с турбореактивными двигателями или, как их называли, реактивные самолёты.

ОКБ Яковлева взяло за основу конструкцию знаменитого, самого лёгкого и маневренного истребителя второй мировой войны - ЯК-3. 24 апреля 1946 года состоялся первый полёт первого в нашей стране реактивного истребителя ЯК-15 конструкции ОКБ А. С. Яковлева. В этот же день 24 апреля 1946 года совершил первый полёт советский реактивный истребитель конструкции ОКБ А. И. Микояна и М. И. Гуревича МиГ-9. Оба полёта прошли успешно.

24 апреля стал днём рождения советской реактивной авиации. Но об этом знаменательном дне почти никто в стране не знает, потому что наши СМИ достижения наших предков скрывают от потомков. 18 августа 1946 года в День Воздушного Флота СССР оба самолёта демонстрировались на параде в Тушино.

К 7 ноября 1946 года было подготовлено около 30 машин для воздушного парада над Красной площадью, но из-за погодных условий воздушный парад был отменён и только 1-го мая 1947 года впервые над Красной площадью пролетели первые реактивные самолёты страны. Шелестящий свист строя летящих самолётов был с восторгом встречен тысячами москвичей и гостей столицы.

Не отставал СССР и в создании реактивной бомбардировочной авиации. В феврале-апреле 1949 года прошёл государственные испытания, и был запущен в массовое производство фронтовой бомбардировщик Ил-28, спроектированный ОКБ С. В. Ильюшина.

Символом послевоенной советской авиации стал реактивный истребитель МиГ-15, поднятый в воздух в конце 1947 года. Уже в 1948 году началось серийное производство этой замечательной машины, превосходящей все типы истребителей США.

На угрозу США применения атомных бомб против СССР у Сталина, имеющего замечательные средства ПВО и истребитель Миг-15, были основания сказать, что американские самолёты не долетят до городов Советского Союза. Способность наших ВВС защитить мирный труд советских людей показала развязанная США 25 июня 1950 года война в Корее.

Советский истребитель Миг-17 публично демонстрировался на воздушном параде в Тушино 20 июня 1953 года, но создан он был тоже при Сталине. Он стал первым в СССР самолётом, достигшим скорости звука в горизонтальном полёте.

При создании самолёта испытатели снова столкнулись с грозным явлением флаттера невиданной разновидности и обратным действием элеронов на скоростях близких к звуковой. Только высочайшее лётное мастерство лётчика-испытателя Седова спасло самолёт, так как за секунду нахождения самолёта во флаттере от рулей осталось не более трети. Нашими талантливыми инженерами были вскрыты причины и устранены все неполадки.

Благодаря своим высоким лётно-техническим характеристикам, надёжности и неприхотливости в эксплуатации МиГ-17 был признан одним из лучших истребителей своего времени, особенно после участия в боях в Египте в 1956 году.

Испытания замечательного истребителя МиГ-19 начались в 1952 году при Сталине. Самолёт достиг в полёте почти полторы скорости звука и фантастической скороподъёмности - за 1,1 минуты он взлетел на 10 километров высоты. В то время ни один самолёт в мире подобной скороподъёмностью не обладал.

Имея такую машину, оснащённую пушками, ракетами и бомбами наши дети могли спать спокойно, так как самолёт был в состоянии мгновенно перехватить и уничтожить любую вражескую машину. МиГ-19 заметно превосходил своих зарубежных современников: F-100, «Супер-Сейбр», «Старфайтер».

Особо хочется отметить ещё один самолёт - двухместный барражирующий перехватчик ОКБ А. С. Яковлева ЯК-25, испытанный тоже при жизни И. В. Сталина 19 июля 1952 года и продемонстрированный публике в июле 1955 года на авиационном празднике в Тушино и 1 мая 1956 года над Красной площадью и в Тушино.

Этот самолёт с двумя двигателями АМ-5А по 2600 кгс каждый конструкции А. А. Микулина предназначался для продолжительного патрулирования вдали от базы. На нём стояли отличные пилотажно-навигационный и радиолокационный комплексы, позволяющие перехватывать цели противника в любых погодных условиях и в большом диапазоне высот.

Этот самолёт совместно с наземными средствами ПВО закрывал возможность нападения на нас США с севера через Северный Полюс. Он был незаменим для работников Крайнего Севера с малочисленным количеством аэродромов. Всего было выпущено 480 самолётов ЯК-25 в основном с мощной РЛС «Сокол». И несмотря на то, что замены ему не было Н. С. Хрущёв устроив погром советской авиации не пощадил и незаменимый ЯК-25 и в 1963 году снял его с эксплуатации.

Невозможно не вспомнить ещё одну уникальную машину - штурмовик ОКБ С. В. Ильюшина Ил-40, поднявшийся в воздух в 1953 году. Но Н. С. Хрущёв в 1956 году принял решение об упразднении штурмовой авиации, и страна осталась без замечательного, особенно нужного пехоте самолёта.

В середине 1950-х годов возобновило работу ОКБ П. О. Сухого. В сентябре 1955 года состоялся первый вылет самолёта СУ-7, а в 1956 году впервые в СССР самолёт СУ-7 достиг скорости вдвое превышающую скорость звука. Машины Сухого были тяжелее машин Яковлева и занимали среднее положение между фронтовым бомбардировщиком и истребителем. И именно такая машина оказалась нужной ВВС страны.

В апреле 1959 года поднялся в воздух самолёт СУ-7Б (доработанный СУ-7) способный нести тактическое ядерное оружие и производить бомбометание с малых высот. В конце 1980-х годов СУ-7Б всех модификаций были сняты с вооружения М. С. Горбачёвым.

Такое решение можно назвать вредительством, ибо самолёты могут летать и летают во всём мире десятилетиями. Даже самолёты 1950-х годов имеют нормальные лётно-технические характеристики и при периодическом ремонте, обновлении оборудования и вооружения могут долго нести службу по охране страны. Уничтожать самолёты, как уничтожал Хрущёв по собственной глупости и Горбачёв с Ельциным в угоду США - это преступление.

Не позволил Н. С. Хрущёв приступить к производству бомбардировщиков - летающих лодок спроектированных в 1952 и последующих годах Р. Л. Бартини.

Возможно, в данном случае Хрущёв прав, но сказать хотя бы об одном проекте надо.

Спроектированный Бартини уникальный гидросамолёт А-57 плоский, как вырезанный из доски треугольник, у которого под водой имеется часть фюзеляжа, а сверху он плоский и незначительно возвышается над водой. Поэтому его трудно заметить на поверхности океана. Его скорость 2500 км/час, дальность полёта 12-14 тысяч километров, взлётная масса 320000 кг, вооружение - одна термоядерная бомба «244 Н» весом 3000кг.

Он мог достигнуть территории США и вернуться обратно, особенно с предложенной в 1961 году ядерной силовой установкой. Он производит впечатление проекта будущего.

А реактивные гидросамолёты конструкции ОКБ Г. М. Бериева - это воплощённая в металле реальность. Впервые реактивный гиросамолёт Р-1 весом 20 000 кг оторвался от воды в конце мая 1952 года, то есть тоже при жизни И. В. Сталина.

Даже США признавали Р-1 первой в мире реактивной летающей лодкой. На его базе ОКБ Г. М. Бериева в 1953 году приступило к разработке более совершенного гидросамолёта, и 20 июня 1956 года реактивный гидросамолёт БЕ-10 весом 48 500 кг взлетел с поверхности воды. На нём было установлено 12 мировых рекорда, в том числе скорости - 912 км/час и высоты 14 962 метра без груза и 11 997 метров с грузом. Это, действительно, летающий корабль.

Но самыми дорогими и сложными в проектировании и производстве были, конечно, бомбардировщики. Советская авиационная промышленность выпускала очень красивые самолёты. По-моему, самые красивые самолёты в мире. Но у каждого из типов самолётов, выпускавшихся в 1950-х годах своя красота. Красота бомбардировщиков особая, запоминающаяся навсегда, потому что за этой красотой просматривается грозная мощь. И самыми красивыми являются самолёты, спроектированные в первой половине 1950-х годов.

На мой взгляд, самый могучий самолёт 1950-х годов - это стратегический бомбардировщик 3М ОКБ главного конструктора В. М. Мясищева. Этот самолёт очень хорошо показали в начале художественного фильма 1974 года выпуска «Небо со мной». 20 января 1953 года при жизни Сталина был поднят в воздух самолёт М-4 (прототип самолёта 3М). В дальнейшем все самолёты М-4 были переделаны под самолёты заправщики для заправки самолётов в воздухе.

26 марта 1956 года начались лётные испытания бомбардировщика 3М. Максимальная взлётная масса самолёта 3М составила 193 тонны без подвесных баков и 202 тонны с ПТБ. Дальность полёта с одной дозаправкой в воздухе составила свыше 15 000 км при продолжительности полёта 20 часов. Это был действительно межконтинентальный самолёт, способный взлетев с аэродромов на территории СССР, атаковать цели в США.

На самолёте 3М и его модификациях было установлено 19 мировых рекордов высоты и скорости полёта с грузом. На вооружении дальней авиации 3М состояли до 1985 года и затем были уничтожены в соответствии с советско-американской договорённостью о сокращении стратегических наступательных вооружений.

И этого красавца убил М. С. Горбачёв. Самолёт 3М был великим стратегическим бомбардировщиком великой континентальной державы. Он огромный, приземистый, с огромными спускающимися к самой земле крыльями, связанный в единый монолит, устремлённый к полёту, поражающий своими размерами и мощью. Сегодняшняя урезанная Россия в отличие от СССР и США никаких стратегических бомбардировщиков не выпускает, а новых не проектирует.

Надо отметить, что когда в связи с созданием системы «Энергия-Буран» возник вопрос о транспортировке по воздуху агрегатов системы к месту сборки на Байконуре, вспомнили о 3М. Владимир Михайлович Мясищев переделал самолёт и назвал его ВМ-Т.

Всего за два года ОКБ Мясищева создало летательный аппарат аналогичный «Боингу В-52», который представлял собой национальную программу США. Самолёты ВМ-Т «Атлант», 3М переделанные под грузовые в 1980 году, выполнили более 150 полётов по перевозке грузов системы «Энергия-Буран».

Вторым великим самолётом великой Советской державы 1950-х годов является стратегический бомбардировщик Ту-95. Бомбардировщик, получивший обозначение «95», предназначался для поражения крылатыми ракетами и бомбовым вооружением важных стационарных объектов днём и ночью, в любых метеоусловиях и в любой точке земного шара.

Первый экземпляр спроектированного ОКБ А. Н. Туполева стратегического бомбардировщика Ту-95 совершил полёт тоже при управлении страной И. В. Сталиным 12 ноября 1952 года. На самолёт установили турбовинтовые (ТВД) двигатели, отличающиеся более низким расходом топлива, но из-за винтов и более низкой скоростью.

Данный самолёт соответствовал всем требованиям, предъявляемым к стратегическим бомбардировщикам-ракетоносцам. Его дальность полёта составляла 15 400 км, максимальная скорость полёта - 882 км/час, максимальный взлётный вес - 172 тонны.

И в заключении темы о бомбардировщиках 1950-х годов надо рассказать ещё об одном самом известном дальнем бомбардировщике ТУ-16. Самолёт Ту-16 конструкции ОКБ А. Н. Туполева был поднят в воздух 27 апреля 1952 года, то есть при Сталине.

Уже в 1953 году началось серийное производство этой сложной машины, и первые бомбардировщики стали поступать в строевые части ВВС страны. 1-го мая 1953 года девятка ТУ-16 прошла над Красной площадью.

Ту-16 занимал среднее положение между стратегическим и фронтовым бомбардировщиком и применялся очень широко как носитель бомб, ядерного оружия, противокорабельных ракет, а так же в качестве самолёта-разведчика, патрульного, противолодочного самолёта и во многих других военных целях.

СССР в силу размеров территории государства очень нуждался в таком самолёте с дальностью полёта 5 800 км и максимальной взлётной массой 79 тонн. В 1993 году при правлении Ельцина самолёт ТУ-16 был снят с вооружения ВВС и ВМФ России. Мы стали ещё беззащитнее перед угрозой с Запада и Востока. А вот в Китае самолёт ТУ-16, называющийся Н-6 находится в строю и в настоящее время. Надо сказать, что за последние 25 лет Россия не выпустила ни одного самолёта класса 3М, ТУ-95 и ТУ-16.

Обратите внимание на сроки испытания, доводки и начала серийного выпуска сложнейшей реактивной авиационной техники в сталинское время. Качество проектирования и сроки выпуска машин изумляют. В производстве самолётов мы при Сталине достигли совершенства. Ни одна страна в мире не достигла ни по одному показателю наших результатов проектирования и изготовления авиационной техники.

Количество типов авиационной техники мы имели ровно столько, сколько надо для обеспечения безопасности страны. И если убрать, хотя бы один тип из названных самолётов, то в воздушной обороне страны появится брешь, а значит, уменьшится безопасность граждан СССР.

Кроме того, создав реактивную стратегическую авиацию, мы сделали уязвимой территорию США и положили конец американской вседозволенности в мире, а так же возможности реализации плана уничтожения Советского Союза, то есть срывали возможность выполнения Западными странами заговора против России.

Невозможно не заметить факта, что изготовление подавляющего большинства самолётов было заложено при И. В. Сталине (Сталин умер 5 марта 1953 года) и Н. С. Хрущёв пользовался плодами его трудов после того, как самолёты были спроектированы, испытаны, доведены, запущены в серийное производство и при правлении Хрущёва начали крупными партиями поступать в ВВС, ВМФ, войска ПВО.

Лётно-технический состав, солдаты, матросы и офицеры славили Хрущёва за новую отличную реактивную авиационную технику, с помощью которой можно одолеть любого врага, а истинного организатора триумфа советской военной авиации 1950-х годов, И. В. Сталина, не называли.

Большинство жителей страны, конечно, не понимало, что не умом и волей Хрущёва, а умом и волей И. В. Сталина и Л. П. Берия появились на свет эти могучие защитники неба Родины. Не прославлялись и конструкторы, инженеры, рабочие, руководители участков, предприятий и многие другие советские люди умом и трудом которых страна обеспечивала свою безопасность. Народ не знал своих героев.

Надо сказать, что сведения о советской военной авиации либералами-ревизионистами не только скрываются, но и преподносятся нашей молодёжи в явно искажённом виде. А о таком выдающемся самолёте, как стратегический бомбардировщик 3М ОКБ В. М. Мясищева в нашей стране знают единицы людей.

После войны в гражданской авиации оставались ещё самолёты довоенных образцов: ЛИ-2, Р-2, ПО-2 и другие. Но постепенно выделялись средства и на производство новых пассажирских самолётов.

Были спроектированы и запущены в серийное производство пассажирские самолёты Ан-2, Ил-12, Ил-14 с поршневыми двигателями соответствующие новым требованиям, предъявляемым к гражданской авиации.

Самолёт Ан-2 был не только пассажирским самолётом для местных авиационных линий, но и лучшим в мире самолётом сельскохозяйственной авиации. Если бы его произвёл не СССР, а США, то и сегодня он бы обрабатывал сельскохозяйственные угодья большинства стран мира. В России его уже не производят, как и остальные отечественные самолёты гражданской авиации, но оставшиеся машины ещё продолжают обрабатывать поля страны. С каждым годом этих машин остаётся всё меньше.

Пассажирские самолёты Ил-12 и Ил-14 отличались от Ли-2 большим максимальным взлётным весом, комфортом, носовым колесом и воплощением в их конструкции многих достижений в области авиастроения поршневой авиационной техники.

Советская авиационная промышленность также начала выпускать поршневые вертолёты Ми-1, Ми-4, Ка-15.

В 1955 году самолёты Ил-12, Ли-2, Ан-2 и вертолёты Ми-4 даже использовались в советской антарктической экспедиции. Но, конечно, на развитие гражданской авиации в послевоенное время достаточного количества денежных средств не выделялось, так как важнейшим вопросом послевоенного времени был вопрос сохранения государства и народа и защиты его от внешнего агрессора, а для этого нужна была не уступающая противнику военная авиация.

Леонид Петрович Масловский

Реактивные самолеты

За первые четыре года войны максимальная скорость серийных самолетов возросла, в среднем, на 100 км/ч: с 500–550 км/ч до 600–650 км/ч Для этого мощность двигателей потребовалось увеличить примерно в два раза: с 1000 до 2000 л.с. (цифры даны для истребителей). Одновременно сильно возрос вес не только силовой установки. но и всего самолета.

Дальнейший рост скорости оказался почти невозможен. Как известно, мощность, затрачиваемая на преодоление аэродинамического сопротивления, пропорциональна квадрату скорости, а тяга пропеллера обратно пропорциональна скорости. Таким образом. потребная мощность винтомоторной силовой установки возрастает пропорционально кубу скорости и, чем на больших скоростях летает самолет, тем больше мощности требуется добавить для одного и того же прироста скорости (рис. 4.62).

Это теория. На практике же потребовалась бы еще большая мощность, так как: 1) с увеличением рабочего объема двигателя возросли бы его габариты и аэродинамическое сопротивление; 2) удельный расход топлива примерно пропорционален мощности, поэтому для сохранения требуемой дальности полета пришлось бы увеличивать запас горючего; 3) из-за возросших веса силовом установки и большего количества топлива для сохранения прежней нагрузки на крыло необходимо увеличить его размеры, что, в свою очередь, привело бы к возрастанию веса и аэродинамического сопротивления самолета.

Рис. 4.62. Зависимость N-f(V)

В 30-е годы увеличение скорости летательных аппаратов осуществлялось не только повышением мощности, но и за счет уменьшения удельного веса мотора, перехода к большим нагрузкам на крыло, улучшения внешних форм самолета и КПД винта, увеличения высоты полета. Однако к середине 40-х голов эти возможности были практически исчерпаны. Более того, с ростом скорости самолетов начало сказываться влияние сжимаемости воздуха, что привело к ухудшению некоторых аэродинамических параметров. Так, было замечено снижение эффективности пропеллера; с ростом скорости и высоты полета и увеличением размеров и числа оборотов воздушного винта на концах лопастей стали возникать скачки уплотнения. Попытки избежать этого за счет увеличения числа лопастей с одновременным уменьшением их длины, изменения формы крутки и профиля лопасти давали лишь ограниченный эффект (рис. 4.63) .

Иногда влияние сжимаемости проявлялось и на самом самолете, обычно при пикировании на больших высотах, где волновой кризис наступает примерно на 150 км/ч раньше, чем при полете у земли. Из-за возникновения скачков уплотнения на крыле начиналась вибрация, самолет затягивало в пикирование. Чаше всего это случалось на американских Р-38 и Р-47. имевших Мкрит=0,7 (на них даже пришлось установить специальные закрылки для вывода из пикирования), реже - на Р-51 с ламинарным профилем (Мкрит=0.,8), еще реже - на «Спитфайре», отличавшимся тонким крыльевым профилем (Мкрит=0,9) . На советских истребителях, действовавших на небольших высотах, случаев влияния сжимаемости не отмечалось.

Итак, становилось ясно, что, несмотря на все ухищрения (введение форсированных режимов работы мотора, применение нагнетателей, использование энергии выхлопа с помощью специальных реактивных насадок), возможности двигателя внутреннего сгорания с воздушным винтом исчерпаны. Для освоения новых диапазонов скорости и высоты полета требовался переход к другому типу силовой установки - реактивному двигателю.

Паллиативной мерой явилось создание двигателей комбинированного типа, с использованием реактивной тяги в качестве дополнительного ускорителя в полете. Для этого под фюзеляжем или на крыльях устанавливали небольшие реактивные двигатели типа ПВРД или ЖРД. Наибольший размах эти работы имели в СССР, где к концу войны из-за меньшей мощности поршневых двигателей наметилось отставание военных самолетов по высоте и скорости от лучших образцов зарубежной авиационной техники. Впервые возможность применения ПВРД на истребителе испытали в 1940 г. на самолетах И-15бис и И-153, расположив под крыльями два таких двигателя. Позднее в качестве эксперимента прямоточные воздушно-реактивные двигатели ставили на истребителях ЛаГГ-3 и Як-7Б.

Рис. 4.63. Изменение КПД винта на околозвуковых скорости

Включение ПВРД давало прирост скорости на 30–50 км/ч, однако из-за большого аэродинамического сопротивления этих двигателей максимальная скорость истребителя с неработающими ПВРД была заметно меньше, чем у такого же самолета без вспомогательных силовых установок. Кроме того, «прямоточки» расходовали массу горючего (60–70 кг/мин). Поэтому вскоре от такого способа отказались.

Установка ЖРД в хвостовой части фюзеляжа не вела к увеличению Схо. Кроме того, при испытаниях в 1943–1945 гг. на бомбардировщике Пе-2 и истребителях Як-3, Jla-7 и Су-7 было установлено, что использование ЖРД-ускорителя (РД-1 с тягой 300 кг) дает более заметый прирост скорости: от 70 до 180 км/ч. Но недостаточная надежность работы жидкостно-ракетного ускорителя и необходимость иметь на борту запас едкой азотной кислоты, используемой в качестве окислителя, сильно затрудняли эксплуатацию. К тому же РД-1 оказался сшс более «прожорливым», чем ПВРД-ускорители: за одну минуту он сжигал 90 кг топлива. Поэтому и этот метод увеличения максимальной скорости полета не получил распространения в ВВС .

Другим типом комбинированного воздушно-реактивного двигателя была мото- компрессорная силовая установка. Первый самолет этого типа построили в Италии на фирме Капрони в августе 1940 г. (рис. 4.64). Силовая установка состояла из поршневого двигателя «Изотта-Фраскини» мощностью 900 л.с., который приводил в действие трехступенчатый компрессор расположенного сзади воздушно-реактивного двигателя. Такая конструкция позволяла обойтись без турбины, являвшейся камнем преткновения на пути создания ТРД из-за того, что материал лопаток не выдерживал сверхвысоких температур за камерой сгорания. Однако полетные испытания показали бесперспективность этой силовой установки - из-за ее низкого КПД максимальная скорость самолета составила всего 330 км/ч .

Рис. 4.64. Экспериментальный самолет Капрони-Кампиии

В экспериментальной реактивно-винтовой моторной установке, сконструированной в 1943–1945 гг. в СССР под руководством К. В. Холщевникова, тяга создавалась совместным действием воздушного пропеллера и ВРД с осевым компрессором, приводимым во вращение от поршневого мотора ВК-107 с помощью удлинительного вала. Истребители с таким двигателем И-107(Су-5) и И-250(МиГ-13) испытывались в марте-апреле 1945 г., а последний даже строился небольшой серией .

Из-за большого веса поршневого двигателя и нерешенных проблем, обусловленных падением КПД пропеллера па высоких скоростях, создание силовых установок комбинированного типа не оправдало себя. Реальный скачек в развитии летно-технических характеристик самолетов был достигнут только тогда, когда двигатель внутреннего сгорания был окончательно заменен реактивным.

Первой страной, наладившей серийный выпуск реактивных самолетов, была Германия. Как отмечалось, опыты с реактивными самолетами немецкие конструкторы начали еще до войны. Работы велись в двух направлениях: создание ракетных самолетов с ЖРД и создание турбореактивных самолетов (табл. 4.15).

Таблица 4.15. Характеристики реактивных самолетов периода второй мировой войны.

* - расчетные значения

Испытания первого в мире ракетного самолета Не-176 летом 1939 г. показали принципиальную возможность полета с помощью ЖРД, однако максимальная скорость, которую достиг этот летательный аппарат после 50 секунд работы двигателя, составила только 345 км/ч. Полагая, что одной из причин этого является консервативная «классическая» схема самолета Хейнкеля, руководители Исследовательского отдела Министерства авиации предложили использовать ракетный двигатель на «бесхвостке». По их заказу немецкий авиаконструктор А. Липпиш, занимавшийся до этого проектированием аппаратов типа «летающее крыло», в 1940 г. построил экспериментальный самолет-«бесхвостку» DFS-I94 с таким же ЖРД Вальтер R1-203. Из-за небольшой тяги двигателя (400 кг) и непродолжительности его работы (I мин.) скорость самолета оказалась не больше, чем у винтомоторных самолетов. Однако вскоре был создан ЖРД Вальтер R2-203, способный развивать тягу 750 кг. Заручившись поддержкой фирмы Мессершмитт, Липпиш выпустил новый ракетный самолет Me-163Л, с двигателем R2-203. Воктябрс 1941 г. X. Диттмар, после подъема самолета на буксире на высоту 4000 м, запустив двигатель, через несколько минут полета на полной тяге достиг невиданной прежде скорости - 1003 км/ч . Казалось бы, после этого немедленно последует заказ на серийное производство самолета в качестве боевой машины. Но немецкое военное командование не торопилось. В то время ситуация в войне складывалась в пользу Германии, и нацистские лидеры были уверенны в скорой победе с помощью имеющихся у них вооружений.

Однако к 1943 г. положение стало иным. Немецкая авиация быстро утрачивала свое лидирующее положение, ухудшилась ситуация на фронтах. Над территорией Германии все чаще появлялись самолеты противника, все более мощными становились бомбовые удары по немецким военным и промышленным объектам. Это заставило серьезно задуматься над усилением истребительной авиации, и идея создания высокоскоростного ракетного истребителя-перехватчика стала чрезвычайно заманчивой. К тому же, был достигнут прогресс в развитии ЖРД - новый двигательфирмы Вальтер HWK 109-509А с увеличенной температурой сгорания топлива мог развивать тягу до 1700 кг. Самолет с этим двигателем получил обозначение Me-163В. В отличие от экспериментального Ме-163А он имел пушечное вооружение (2x30 мм) и бронезащиту пилота, т. е. представлял собой боевой самолет.

В связи с тем, что доводка HWK 109-509А затянулась, первый серийный Ме-163В поднялся в воздух только 21 февраля 1944 г., а всего до конца войны было построено 279 таких самолетов . С мая 1944 г. они принимали участие в боевых действиях в качестве истребителя-перехватчика на Западном фронте. Так как радиус действия Me-163 был невелик - всего окаю 100 км, предполагалось создать целую сеть специальных групп перехвата, расположенных на расстоянии примерно 150 км друг от друга и защищающих Германию с северного и западного направлений.

Ме-163 представлял собой «бесхвостку» со стреловидным крылом (рис. 4.65). Фюзеляж имел металлическую конструкцию, крыло - деревянную. Стреловидность крыла в сочетании с аэродинамической круткой использовалась для продольной балансировки самолета без горизонтального оперения. Вместе с тем, как выяснилось позднее, применение стреловидного крыла позволяло снизить волновое сопротивления на околозвуковых скоростях полета.

Из-за большой тяги двигателя по скорости Me-163 превосходил другие реактивные самолеты периода второй мировой войны и обладал невиданной прежде скороподъемностью - 80 м/сек. Однако его боевую эффективность сильно снижала очень малая продолжительность полета. Вследствие большого удельного расхода горючего и окислителя жидкостно-ракетным двигателем (5 кг/сек) их запаса хватало только на 6 минут работы ЖРД на полной тяге. После набора высоты 9-10 км летчик имел время только на одну короткую атаку. Весьма сложным были также взлет и посадка из-за необычного шасси в виде отдаляемой тележки (посадка осуществлялась на выдвигаемую из фюзеляжа лыжу). Частые случаи остановки двигателя, высокая посадочная скорость, неустойчивость при разбеге и пробеге, большая вероятность взрыва ракетного топлива при ударе - все это, по свидетельству очевидца событий, явилось причиной множества катастроф .

Технические недостатки усугублялись нехваткой ракетного топлива и недостатком летчиков в конце войны. В результате только четверть из числа построенных Me-163В приняли участие в боевых действиях. Самолет не оказал какого либо заметного эффекта на ход войны. Поданным зарубежной печати, реально боеспоспособным было только одно подразделение, на счету которого оказалось 9 сбитых бомбардировщиков при собственных потерях 14 самолетов .

В конце 1944 г. немцы сделали попытку усовершенствовать самолет. Чтобы увеличить продолжительность полета двигатель оборудовали вспомогательной камерой сгорания для полета на крейсерском режиме с уменьшенной тягой, увеличили запас топлива, вместо отделяемой тележки установили обычное колесное шасси. До конца войны удалось построить и испытать только один образец, получивший обозначение Ме-263.

В 1944–1945 гг. Япония пыталась наладить у себя выпуск самолетов типа Ме-163 для борьбы с высотными бомбардировщиками В-29. Была куплена лицензия, но одну из двух немецких подводных лодок, направленных из Германии в Японию для доставки документов и технических образцов, потопили, и японцам достался только неполный комплект чертежей. Тем не менее фирме Мицубиси удалось построить и самолет и двигатель. Самолету присвоили название J8M1. В первом полете 7 июля 1945 г. он разбился из-за отказа двигателя при наборе высоты .

Стимулом к созданию ракетных самолетов было стремление найти средство противодействия в условиях господства авиации противника-Поэтому в СССР работы по истребителю с ЖРД, в противоположность Германии и Японии, велись в начальной стадии войны, когда немецкая авиация хозяйничала в небе нашей страны. Летом 1941 г. В. Ф. Болховитинов обратился к правительству с проектом истребителя-перехватчика БИ с ЖРД, разработанным инженерами А. Я. Березняком и А. М. Исаевым.

Рис. 4.65. Мессершмитт Ме-163B

Рис. 4.66. Истребитель БИ

В отличие от Me-163, самолет БИ имел обычную схему с нестреловидным крылом, хвостовым оперением и убираемым колесным шасси (рис. 4.66). Конструкция была выполнена из дерева и отличалась небольшими размерами, площадь крыла составляла всего 7 м?. Расположенный в хвостовой части фюзеляжа ЖРД Д-1А-1100 развивал максимальную тягу 1100 кг. Военное положение было тяжелое, поэтому уже на первом опытном экземпляре установили вооружение (2 пушки калибром 20 мм) и бронезащиту летчика.

Летные испытания самолета задержала вынужденная эвакуация на Урал. Первый полет состоялся 15 мая 1942 г летчик Г. Я. Бахчиванджи). Он продолжался чуть более трех минут, но, тем не менее, вошел в историю как первый полет боевого самолета с ракетным двигателем. Посте замены планера самолета, вызванной повреждением его конструкции парами азотной кислоты, используемой в качестве окиститсля, в 1943 г. испытательные полеты продолжили. 27 марта 1943 г. произошла катастрофа: из-за нарушения устойчивости и управляемости вследствие возникновения скачков уплотнения на большой скорости (об этой опасности тогда и не подозревали) самолет самопроизвольно перешел в пикирование и разбился, Бахчиванджи погиб.

Еще во время испытаний была заложена серия истребителей БИ. После катастрофы несколько десятков недостроенных самолетов уничтожили, признав их опасными для полетов. Кроме того, как показали испытания, запаса 705 кг топлива и окислителя хватаю менее, чем на две минуты работы двигателя , что ставило под сомнение саму возможность практического применения самолета.

Существовала и еще одна, внешняя, причина: к 1943 г. удалось наладить широкомасштабный выпуск винтомоторных боевых самолетов, не уступавших по характеристикам немецким машинам, и уже не было острой необходимости во внедрении в производство новой, малоизученной и поэтому опасной техники.

Самым необычным из ракетных самолетов, построенных во время войны, был немецкий вертикально-взлетающий перехватчик Ва-349А «Наттер». Его спроектировали как альтернативу Me-163, рассчитанную на массовое производство. Ва-349А представлял собой предельно дешевый и технологичный самолет, сконструированный из наиболее доступных сортов древесины и металла. Крыло не имело элеронов, поперечное управление осуществлялось дифференциальным отклонением рулей высоты. Старт происходил вдаль вертикальной направляющей длиной около 9 м. Самолет разгонялся с помощью четырех пороховых ускорителей, установленных по бокам задней части фюзеляжа (рис. 4.67). На высоте 150 м отработанные ракеты сбрасывались и полет продолжался за счет работы основного двигателя - ЖРД Вальтер 109-509А. Вначале перехватчик наводился на вражеские бомбардировщики автоматически, по радиосигналам, а когда пилот видел цель, он брал управление на себя. Приблизившись к цели, летчик давал залп из двадцати четырех 73-мм реактивных снарядов, установленных под обтекателем в носу самолета. Затем он должен был отделить переднюю часть фюзеляжа и спуститься с парашютом на землю. Двигатель также должен был сбрасываться с парашютом, чтобы его можно было использовать повторно. Очевидно, что данный проект опережал технические возможности немецкой индустрии, и не приходится удивляться, что летные испытания в начале 1945 г. закончились катастрофой - на режиме вертикального взлета самолет потерял устойчивость и разбился, пилот погиб .

Рис. 4.67. Старт самолета Ва-349А

В качестве силовой установки для «одноразовых» самолетов применяли не только ракетные двигатели. В 1944 г. немецкие конструкторы проводили эксперименты с самолетом-снарядом, снабженным пульсирующим воздушно-реактивным двигателем (ПуВРД) и предназначенным для действий по морским целям. Этот летательный аппарат представлял собой пилотируемый вариант крылатого снаряда Физелер Fi- 103 (V-1), который использовался для обстрела Англии. В связи с тем, что при работе на земле тяга ПуВРД ничтожно мала, самолет не мог взлетать самостоятельно и доставлялся в район цели на самолете-носителе. Шасси на Fi-103 не было. После отделения от носителя летчик должен был прицелиться и спикировать на цель. Несмотря на то, что в кабине имелся парашют, Fi-103, по существу, являлся оружием летчиков-смертников: шансов на благополучное покидание самолета с парашютом при пикировании со скоростью около 800 км/ч было крайне мало. До конца войны в пилотируемые самолеты-снаряды переделали 175 ракет, но из-за многочисленных катастроф при испытаниях в бою их не применяли.

Невостребованные самолеты фирма Юнкере попыталась переделать в штурмовики Ju-126, установив на них шасси и пушечное вооружение. Взлет должен был осуществляться с катапульты или с помощью ракетных ускорителей. Постройка и испытания этой машины происходили уже после войны, по заданию, выданному СССР немецким авиаконструкторам .

Еще одним пилотируемым самолетом-снарядом с ПуВРД должен был стать Ме- 328. Его испытания состоялись в середине 1944 г. Чрезмерная вибрация, связанная с работой пульсирующих воздушно-реактивных двигателей, привела к разрушению самолета и прервала дальнейшие работы в этом направлении.

По настоящему работоспособные реактивные самолеты были созданы на основе турбореактивных двигателей, появившихся после того, как удалось решить проблему жаропрочности конструкционных материалов для лопаток турбины и камер сгорания. Этот тип двигателя по сравнению с ПВРД или ПуВРД обеспечивал автономность взлета и вызывал меньшую вибрацию, а от ЖРД он выгодно отличался в 10–15 раз меньшим удельным расходом топлива, отсутствием необходимости в окислителе, большей безопасностью в эксплуатации.

Первым истребителем с ТРД был немецкий самолет Хейнкель Не-280. Проектирование машины началось в 1939 г., вскоре после испытаний экспериментального реактивного самолета Не-178. Под крыльями стояли 2 ТРД HeS-8A с тягой по 600 кг. Конструктор так объяснял выбор двухдвигательной схемы: «Опыт работы над одно- двигательным реактивным самолетом показал, что фюзеляж такого летательного аппарата ограничен длиной воздухозаборника и сопловой частью силовой установки. При такой схеме установки двигателя было очень трудно устанавливать вооружение, без которого турбореактивный самолет не представлял интереса в военном отношении. Я видел только один выход из такого положения: создание истребителя с двумя двигателями под крылом» .

В остальном самолет представлял собой обычную конструкцию: металлический моноплан с не стреловидным крылом, колесным шасси с носовой опорой и двухкилевым хвостовым оперением. В начале испытаний вооружения на самолете не было, пушки (3x20мм) установили только летом 1942 г.

Первый полет Не-178 состоялся 2 апреля 1941 г. Месяц спустя была достигнута скорость 780 км/ч .

Не-178 был первым в мире двухмоторным реактивным самолетом. Еще одним новшеством явилось применение системы катапультирования летчика. Это было сделано, чтобы обеспечить спасение на больших скоростях, когда сильный скоростной напор уже не даст летчику возможности самостоятельно выброситься из кабины с парашютом. Катапультное кресло выстреливалось из кабины с помощью сжатого воздуха, затем летчик сам должен был отсоединить привязные ремни и раскрыть парашют.

Система катапультирования пригодилась уже через несколько месяцев после начала испытаний Не-280. 13 января 1942 г., во время полета в плохих погодных условиях, произошло обледенение самолета, и он перестал слушаться рулей. Механизм катапульты сработал исправно, и летчик благополучно приземлился. Это было первое в истории авиации практическое использование системы катапультирования человека.

Начиная с 1944 г. по распоряжению Технического отдела Германского министерства авиации на опытных вариантах всех военных самолетов предписывалось иметь только катапультные кресла. Система катапультирования применялась также на большинстве серийных немецких реактивных самолетов. До конца второй мировой войны в Германии имело место около 60 случаев успешного катапультирования летчиков .

На начальной стадии войны гитлеровское военное руководство не проявляло особого интереса к новому самолету Хейнкеля и не ставило вопроса о его серийном производстве. Поэтому до 1943 г. Не-280 так и оставался экспериментальной машиной, а затем появился Ме-262 с лучшими летными характеристиками, и программу реактивного самолета фирмы Хейнкель закрыли.

Первым серийным самолетом с ТРД был истребитель Мессершмитт Ме-262 (рис. 4.68). Он состоял на вооружении немецких ВВС и принимал участие в боевых действиях.

Строительство первого опытного образца Ме-262 началось в 1940 г, а с 1941 г. проходили его летные испытания. Вначале самолет облетывался с комбинированной установкой из винтомоторного двигателя в носу фюзеляжа и 2 ТРД под крылом. Первый полет только с реактивными двигателями состоялся 18 июля 1942 г. Он продолжался 12 минут и прошел вполне успешно. Летчик-испытатель Ф. Венд ель пишет: «Турбореактивные двигатели работали как часы, а управляемость машины была на редкость приятной. В самом деле, я редко когда чувствовал такой энтузиазм во время первого полета на каком-либо самолете, как на Me 262» .

Так же как и Не-280, Ме-262 представлял собой одноместный цельнометаллический свободнонесущий моноплан с 2 ТРД в гондолах под крылом. Шасси с хвостовой опорой вскоре по образцу Не-280 заменили на трехколесное, с носовым колесом; такая схема лучше соответствовала большим взлетно-посадочным скоростям реактивного самолета. Фюзеляж имел характерную форму поперечного сечения в виде расширяющегося вниз треугольника со скругленными углами. Это позволяло убирать колеса основных стоек шасси в ниши в нижней поверхности фюзеляжа и обеспечивало минимальное сопротивление интерференции в зоне сочленения крыла и фюзеляжа. Крыло - трапециевидной формы со стреловидностью по передней кромке 18°. На задней прямой кромке были расположены элероны и посадочные закрылки. Запуск турбореактивных двигателей Jumo-004 тягой по 900 кг осуществлялся с помощью бензинового двухтактного двигателя-стартера. Благодаря большей, чем у Не-280 мощности двигателей самолет мог продолжать полет при остановке одного из них. Максимальная скорость полета на высоте 6 км составляла 865 км/ч.

Рис. 4.68. Мессершмитт Ме-262

В ноябре 1943 г. реактивный «Мессершмитт» демонстрировался Гитлеру. Посте этого последовало решение о серийном производстве самолета, однако, вопреки здравому смыслу, Гитлер приказал строить его не как истребитель, а как скоростной бомбардировщик. Так как Ме-262 не имел места для внутреннего бомбоотсека, бомбы пришлось подвешивать под крылом, при этом из-за возросшего веса и аэродинамического сопротивления самолет терял преимущество в скорости перед обычными винтомоторными самолетами-истребителями. Только почти год спустя лидер Третьего Рейха отказался от своего ошибочного решения.

Другим обстоятельством, задержавшим серийный выпуск реактивных самолетов, были трудности с производством ТРД. К ним относятся и конструктивные проблемы, связанные с часто стучавшимися самопроизвольными остановками Jumo-004 в налете, и технологические трудности из-за нехватки никеля и хрома для изготовления жаропрочных лопаток турбин к блокированной с суши и моря Германии, и нарушения производства в связи с усиливающимися бомбардировками англо-американской авиацией и вызванного этим переводом значительной части авиастроительной индустрии в специальные подземные заводы.

В результате первые серийные Ме-262 появились только летом 1944 г. Стремясь возродить Люфтваффе, немцы быстрыми темпами наращивали выпуск реактивных самолетов. До конца 1444 г. было изготовлено 452 Ме-262. за первые 2 месяца 1945 г. - еще 380 машин |52, с. 126 |. Самолеты выпускались в вариантах истребителя с мощным вооружением (четыре 30-мм пушки в носовой части фюзеляжа), истребителя-бомбардировщика с двумя бомбами на пилонах под крылом и фоторазведчика. В конце войны основные самолетостроительные заводы были уничтожены бомбардировками, и изготовление самолетов и деталей к ним велось на маленьких фабриках, построенных на скорую руку в лесной глуши, чтобы сделать их незаметными дли авиации. Аэродромов не было, собранные Ме-262 должны были взлетать с обычного шоссе.

В связи с острой нехваткой авиационного топлива и летчиков большинство из построенных Ме-262 так никогда и не поднялось в воздух. Тем не менее, несколько боевых подразделений реактивных самолетов принимало участие в боях. Первый воздушный бой Ме-262 с самолетом противника произошел 26 июля 1944 г., когда немецкий пилот атаковал высотный английский разведчик «Москито». Благодаря лучшей маневренности «Москито» сумел уйти от преследования. Позднее Ме-262 применялись группами для перехвата бомбардировщиков. Иногда происходили схватки с истребителями сопровождения, и были даже случаи, когда обычному винтомоторному самолету удавалось сбить более скоростной, но менее маневренный реактивный истребитель . Но это происходило редко. В целом, Ме-262 продемонстрировали превосходство перед обычными самолетами, прежде всего как перехватчики (рис. 4.69).

В 1945 г. в Японии, получившей от фирмы Крупп технологию производства жаропрочных сталей для турбин, сконструировали по образцу Ме-262 реактивный самолет Накадзима J8N1 «Кикка» с 2 ТРД Ne20. Единственный испытанный в полете самолет поднялся в воздух 7 августа, на следующий день после атомной бомбардировки Хиросимы. К моменту капитуляции Японии на линии сборки находилось 19 реактивных истребителей «Кикка» .

Вторым немецким самолетом с турбореактивными двигателями, применявшимся в боевых действиях, был многоцелевой двухмоторный Арадо Ar-234. Его начали проектировать в 1941 г. как скоростной разведчик. Из-за сложностей с доводкой двигателей Jumo-004 первый полет состоялся только в середине 1943 г., а серийное производство началось в июле 1944 г.

Рис. 4.64. Высотно-скоростные характеристики самолетов «Спитфайр» ХIV и Ме-262

Самолет имел верхнерасположеннное крыло. Такая компоновка обеспечивала необходимый клиренс между землей и установленными под крылом двигателями при взлете и посадке, но, в то же время, создавала проблему с уборкой шасси. Вначале хотели применить сбрасываемую колесную тележку, как на Ме-163. Но это лишало пилота возможности повторного взлета в случае посадки вне аэродрома. Поэтому в 1944 г. самолет оборудовали обычным колесным шасси, убирающимся в фюзеляж. Для этот пришлось увеличить размеры фюзеляжа и перекомпоновать топливные баки (вариант Ar-232В).

По сравнению с Ме-262 Ar-234 имел большие размеры и вес, в связи с этим его максимальная скорость при тех же двигателях была меньше - около 750 км/ч. Но зато самолет мог нести на внешних подвесках три 500-кг бомбы.. Поэтому, когда в сентябре 1944 г, сформировали первое боевое подразделение реактивных «Арадо». их применяли не только для разведки, но и для бомбометания и для наземной поддержки войск. В частности, самолеты Ar-234В выполняли бомбовые удары по англо-американским войскам во время немецкого контрнаступления на Арденах зимой 1944–1945 гг.

В 1944 г. испытывался четырехдвигательный вариант Ar-234С (рис. 4.70) - двухместный многоцелевой самолет с усиленным пушечным вооружением и увеличенной скоростью полета. Из-за нехватки реактивных двигателей для немецкой реактивной авиации он не строился в серии.

Всего до мая 1945 г. было изготовлено около 200 Ar-234 . Как и в случае с Ме-262, из-за острого дефицита авиационного топлива к концу войны около половины этих самолетов не участвовало в боях.

Вклад в развитие реактивной авиации в Германии внесла также старейшая немецкая самолетостроительная фирма Юнкере. В соответствии с традиционной специализацией проектирования многомоторных самолетов там было решено создать тяжелый реактивный бомбардировщик Ju-287. Работы начались в 1943 г. по инициативе инженера Г. Воккс. К этому времени уже было известно, что для увеличения Мкриг в полете следует применять стреловидное крыло. Воккс предложил необычное решение - установить на самолете крыло обратной стреловидности. Преимуществом данной компоновки было то, что срыв потока на больших углах атаки возникал сначала в корневых частях крыла, без потери работоспособности элеронов. Правда, ученые предупреждали об опасности возникновения сильных аэроупругих деформаций крыла при обратной стреловидности, но Воккс и его единомышленники надеялись, что в ходе испытаний им удастся решить прочностные проблемы.

Р ис 4.70. Арадо Ar-234С I

Рис. 4.71. Опытный экземпляр бомбардировщика Ju-287

Для ускорения постройки первого образца использовали фюзеляж от самолета Не-177, хвостовое оперение - от Ju-288. На самолете установили четыре ТРД Jumo-004: 2 в гондолах под крылом и 2 - по бокам носовой части фюзеляжа (рис. 4.71). Для облегчения взлета к двигателям добавили стартовые ракетные ускорители. Испытания первого в мире реактивного бомбардировщика начались 16 августа 1944 г. В целом, они дали положительные результаты. Однако максимальная скорость не превысила 550 км/ч, поэтому на серийном бомбардировщике решили установить 6 двигателей BMW-003 тягой по 800 кг. По расчетам в этом случае самолет должен был брать до 4000 кг бомб и иметь скорость полета на высоте 5000 м 865 км/ч. Летом 1945 г. частично построенный бомбардировщик попал к советским войскам, руками немецких инженеров его довели до летного состояния и отправили в СССР на испытания .

Стремясь переломить ход военных действий за счет массового выпуска реактивных самолетов, немецкое военное руководство осенью 1944 г. объявило конкурс на создание дешевого истребителя с ТРД, в отличие от Ме-262 пригодного для производства из простейших материалов и без применения квалифицированной рабочей силы. В конкурсе приняли участие почти все ведущие авиационные конструкторские организации - Арадо, Блом и Восс, Хейнкель, Физлср, Фокке-Вульф, Юнкере. Лучшим был признан проект фирмы Хейнкель- Не-162.

Самолет Не-162 (рис. 4.72) представлял собой одноместный однодвигательный моноплан с металлическим фюзеляжем и деревянным крылом. Для упрощения процесса сборки двигатель BMW-003 установили на фюзеляже. Самолет должен был иметь простейшее пилотажное оборудование и очень ограниченный ресурс. Вооружение состояло из двух пушек калибром 20 мм. По планам Министерства авиации предполагалось в январе 1945 г. выпустить 50 самолетов, в феврале - 100 и далее наращивать производство до 1000 машин в месяц . Не-162 должен был стать основным самолетом для создаваемого по приказу фюрера народного ополчения Фолькштурм. Руководству молодежной организации Гитлерюгенд поручили в кратчайшие сроки подготовить несколько тысяч пилотов для этого самолета.

Не-162 спроектировали, построили и испытали всего за три месяца. Первый полет состоялся 6 декабря 1944 г., а уже в январе на метких предприятиях в горных районах Австрии начали серийный выпуск машины. Но было уже стишком поздно. До конца войны на вооружение успели передать только 50 самолетов, еще 100 было подготовлено к испытаниям, около 800 Не-162 находились на различных стадиях сборки. В боевых действиях самолет не участвовал. Это позволило спасти жизни не только солдат антигитлеровской коалиции, но и сотен немецких юношей: как показали испытания Не-162 в СССР , самолет имел плохую устойчивость, и использование на нем в качестве пилотов 15-16-летних подростков, практически не имевших летной подготовки (все «обучение» заключалось в нескольких полетах на планере) было бы равноценно их убийству.

Рис. 4.72. Хейнкель Не-162

Большинство первых реактивных самолетов имело прямое крыло. Среди серийных машин исключение составлял Me-163, но стреловидность в данном случае была обусловлена необходимостью обеспечить продольную балансировку самолета схемы «бесхвостка» и была слишком мала, чтобы заметно влиять на Мкрит.

Возникновение скачков уплотнения на больших скоростях послужило причиной целого ряда катастроф, причем, в отличие от винтомоторных самолетов, волновой кризис происходил не при пикировании, а в горизонтальном полете. Первым из таких трагических происшествий была гибель Г. Я. Бахчиванджи. С началом серийного производства реактивных самолетов эти случаи участились. Вот как описывает их летчик-испытатель фирмы Мессершмитт Л. Гофман: «Эти катастрофы (по словам свидетелей, внушаюших доверие) происходили следующим образом. Самолет Me 262 после достижения в горизонтальном полете большой скорости самопроизвольно переходил в пикирование, вывести из которого самолет летчику уже не удавалось. Установить причины этих катастроф путем расследования практически было невозможно, так как летчики не оставались в живых, а самолеты полностью разбивались. В результате этих катастроф погибли один летчик-испытатель фирмы „Мессершмитт“ и целый ряд военных летчиков» .

Загадочные катастрофы ограничивали возможности реактивной авиации. Так, по указанию военного руководства, максимально допустимые скорости Me-163 и Ме- 262 не должны были превышать 900 км/ч .

Когда к концу войны ученые стали догадываться о причинах затягивания самолетов в пикирование, немцы вспомнили рекомендации А. Буземанна и А. Бетца о преимуществах стреловидного крыла на больших скоростях. Первым самолетом, в котором стреловидность несущей поверхности была выбрана специально для уменьшения волнового сопротивления, явился описанный выше Юнкере Ju-287. Незадолго до конца войны, по инициативе главного аэродинамика фирмы Арадо Р. Козина, начались работы по созданию варианта самолета Ar-234 с крылом, так называемой, серповидной формы. Стреловидность у корня составляла 37°, к концам крыла она уменьшалась до 25°. При этом благодаря переменной стреловидности крыла и специальному подбору профилей предполагалось обеспечить одинаковые значения Мкрит вдоль размаха. К апрелю 1945 г., когда цеха фирмы были заняты английскими войсками, модифицированный «Арадо» был почти готов. Позднее англичане использовали аналогичное крыло на реактивном бомбардировщике «Виктор».

Применение стреловидности позволяло уменьшить аэродинамическое сопротивление, но на малых скоростях такое крыло было больше подвержено срыву потока и давало меньший Су макс по сравнению с прямым. В результате возникла идея крыла изменяемой в полете стреловидности. С помощью механизма поворота консолей крыла на взлете и посадке должна была устанавливаться минимальная стреловидность, на больших скоростях - максимальная. Автором данной идеи являлся А. Липпиш

Рис. 4.74. DM-1 в аэродинамической лаборатории Ленгли, США

Рис 4.75 Хортен Нo-9

После предварительных аэродинамических исследований, показавших возможность заметного «смягчения» волнового кризиса при применении крыла малого удлинения (рис. 4.73), в 1944 г. Липпиш приступил к созданию безмоторного аналога самолета. Планер, названный DM-1, помимо треугольного крыла малого удлинения отличался необычно большим по площади вертикальным килем (42 % от S крыла). Это было сделано ал я сохранения путевой устойчивости и управляемости на больших углах атаки. Внутри киля находилась кабина летчика. Для компенсации перераспределения аэродинамических сил на крыле при околозвуковой скорости, которая должна была достигаться при крутом пикировании с большой высоты, предусматривалась система перекачки водяного балласта в хвостовой бак. К моменту капитуляции Германии строительство планера было почти завершено. После войны DM-1 переправили в США для изучения в аэродинамической трубе (рис. 4.74) ).

Еще одной интересной технической разработкой, появившейся в Германии в конце войны, был реактивный самолет-«летающее крыло» Хортен Но-9. Как уже отмечалось, схема «бесхвостка» была весьма удобная компоновки реактивных двигателей в фюзеляже, а стреловидное крыло и отсутствие фюзеляжа и хвостового оперения обеспечивали малое аэродинамическое сопротивление на околозвуковых скоростях. По расчету этот самолет с двумя ТРД Jumo-004B тягой по 900 кг должен был иметь V? n *c? 945 км/ч |39, с. 92 |. В январе 1945 г., посте первого успешного полета опытного образца Ho-9V-2 (рис. 4.75), фирме «Гота» дали заказ на пробную серию из 20 машин, производство которых было включено в чрезвычайную программу обороны Германии. По этот заказ так и остался на бумаге - немецкая авиаиндустрия к тому времени была уже неработоспособна.

Политическая ситуация стимулировала развитие реактивной авиации не только в Германии, но и в других странах, прежде всего в Англии - основном сопернике немецких ВВС в первые годы войны. В этой стране уже имелись технические предпосылки для создания реактивных летательных аппаратов: в 1930-е годы над конструкцией ТРД там работал инженер Ф. Уиттл. Первые работоспособные образцы двигателей Уиттла появились на рубеже 30-40-х годов.

В отличие от немецких двигателей, имевших многоступенчатый осевой компрессор, на английских ТРД применялся одноступенчатый центробежный компрессор, разработанный на основе конструкции центробежных нагнетателей поршневых двигателей. Такой тип компрессора был легче и проще, чем осевой, но имел заметно больший диаметр (табл. 4.16).

Таблица 4.16. Характеристики немецких и английских ТРД

Вскоре посте начала войны Министерство авиации Великобритании поручило фирме Глостер построить экспериментальный самолет Е.28/39 для испытаний ТРД Ф. Уиттла W.I. Чтобы максимально засекретить работы, самолет собирали не на авиационном заводе, а в малоприметном автомобильном гараже. Он представлял собой небольшой одноместный моноплан с нестреловидным крылом (рис. 4.76). Первый полет состоялся 15 мая 1941 г., его выполнил летчик-испытатель фирмы Глостер П. Сэйср. Так как тяга двигателя составляла всего 390 кг, скорость Е.28/39 оказалась меньше, чем у винтомоторных самолетов - всего 480 км/ч. Однако, когда в 1943 г. на самолете установили более совершенный ТРД Пауэре Джет W.2/500 с тягой 775 кг, скорость полета возросла до 745 км/ч .

Потенциальные преимущества ТРД оказались столь убедительными, что уже в 1941 г. правительство слетало фирме Глостер заказ на реактивный истребитель-перехватчик. Первый такой самолет, G.41, построили в 1943 г. Он имеет два двигателя Де Хевилленд «Гоблин» тягой по 680 кг. Они располагались в гондолах на крыле. Из-за невысокой тяги двигателей и их большого миделя скорость самолета не превышала 650 км/ч. Тем не менее, правительство решило дать заказ на серийный выпуск реактивных самолетов. Первоначально они имели название «Тандср- болт», однако вследствие присвоения этого имени американскому истребителю Р-47, самолет получил новое обозначение - «Метеор».

Возможности роста скоростных качеств истребителя ограничивало возникновение скачков уплотнения в месте соединения мотогондол большого диаметра с крылом. Прогресс был достигнут в начале 1945 г., когда появился новый вариант, «Метеор» F.3 (рис. 4.77) с двигателями Раглс-Ройс «Дервент» тягой по 900 кг, отличающимися на 200 мм меньшим габаритным поперечным размером компрессора.

G.41 «Метеор» был единственным реактивным самолетом стран антигитлеровской коалиции, принимавшим участие в войне. Первые 20 «Метеоров» поступили на вооружении английской авиации в июле 1944 г. Вначале их использовали в системе ПВО для борьбы с немецкими крылатыми ракетами V-1. В январе 1945 г. подразделение «Метеоров» F.3 направили в Бельгию для поддержки наступления англо-американских сил. В боях с немецкими реактивными самолетами «Метеору» поучаствовать не довелось.

В США не было собственного авиационного реактивного двигателя. Поэтому при создании первого американского реактивного самолета Белл Р-59 «Эркомет» на нем установили выполненные фирмой Дженерал Электрик копии английских ТРД конструкции Ф. Уиттла. Проектирование самолета началось в сентябре 1941 г. по инициативе Технического отдела ВВС США, а 1 октября 1942 г. состоялся его первый полет под управлением летчика Р. Стенли.

Р-59 проектировался как боевой истребитель, в августе 1944 г. началось серийное производство машины. Однако из-за значительной интерференции крыла и расположенных по бокам фюзеляжа гондол двигателей летные характеристики самолета оказались не лучше, чем у истребителей с поршневыми двигателями (Ум акс=660 км/ч). Поэтому Р59 применялся только как учебно-тренировочный самолет, их построили 50 экземпляров.

Первый по-настоящему боевой реактивный истребитель, Локхид F-80 «Шутинг Стар», появился в США в 1944 г. К этому времени американцам удалось создать ТРД с вдвое большей тягой, чем первые двигатели Ф. Уиттла. Поэтому, в отличие от Р-59, F-80 был однодвигательным самалетом. Расположение ТРД в фюзеляже позволило значительно улучшить обтекаемость аппарата, и максимальная скорость F-80 составляла около 900 км/ч. Серийное производство самолета началось уже после окончания войны.

Рис. 4.76. Экспериментальный самолет Глостер Е28/39

В целом, реактивная авиация в Англии и США в годы второй мировой войны по уровню развития заметно уступала немецким работам в этой области. Если в странах антигитлеровского блока к концу войны имелся только один полноценный боевой реактивный самолет, то в Германии в боевых действиях участвовало три типа реактивных самолетов - Ме-163, Ме-262 и Ar-234. К тому же, как следует из таблицы 4.15, английский «Метеор» из-за меньшей тяга и большого «лба» двигателей сильно уступал по скорости и ряду других параметров основному немецкому реактивному истребителю Ме-262.

В области аэродинамики скоростного полета немецким конструкторам и ученым принадлежит первенство в предложении таких способов уменьшения волнового сопротивления, как стреловидное крыло, крыло изменяемой в полете стреловидности, треугольное крыло малого удлинения. Как известно, эти технические решения нашли впоследствии самое широкое применение в авиации.

Одной из причин отставания в развитии реактивной авиации в странах антигитлеровской коалиции было то, что практические работы в этой области в США, Англии и других странах начались позднее, чем в Германии. Но главным мне представляется отсутствие стимулов к созданию реактивных летательных аппаратов в странах, имевших в конце войны значительно более мощную авиацию по сравнению с Германией, обеспечивавшую господство в воздухе с помощью обычных винтомоторных самолетов.

Из книги Бермудский треугольник и другие загадки морей и океанов автора Конев Виктор

Самолеты «КС-135» В среду 28 августа 1963 года с авиабазы «Хоумстед» на Флориде одновременно поднялись в воздух два самолета типа «КС-135». Последнее сообщение от них поступило около полудня, когда самолеты находились на расстоянии 1200 километров северо-восточнее Майами

Из книги Бог войны Третьего рейха автора

автора Первушин Антон Иванович

Реактивные истребители Бартини Еще один проект истребителя будущего разрабатывал самый эксцентричный конструктор в истории авиации Роберто Людовигович Бартини (Роберто Орос ди Бартини). Итальянский барон-коммунист, сделавший блестящую карьеру в стране Советов,

Из книги Битва за звезды-1. Ракетные системы докосмической эры автора Первушин Антон Иванович

Реактивные бомбардировщики «Пе-2» Конечно, Королев понимал, что до реализации проекта «РП» в полном объеме еще очень далеко. Потому в качестве первого этапа он рассматривал возможность создания экспериментального ракетоплана на основе пикирующего бомбардировщика

Из книги Автомобили Советской Армии 1946-1991 автора Кочнев Евгений Дмитриевич

Из книги Артиллерия в Великой Отечественной войне автора Широкорад Александр Борисович

Приложение 5 Реактивные установки в Великой Отечественной войне По приказу Верховного Главнокомандующего от 8 августа 1941 г. началось формирование первых восьми полков реактивной артиллерии. Это стало важной вехой в ее истории. Новым формированиям присваивалось

Из книги Полеты богов и людей автора Никитин Юрий Фёдорович

Реактивные сопла древности

Из книги Третий рейх автора Булавина Виктория Викторовна

«Настоящий квантовый скачок». Первые реактивные самолеты Не менее значимыми, чем разработка ракет, были разработки в области самолетостроения. Немецкие Люфтваффе имели преимущество в начале войны, и если бы не нерешительность и недальновидность руководства Третьего

Из книги Реактивная авиация Второй мировой войны автора Козырев Михаил Егорович

9. Реактивные вертолеты и автожиры В реактивных вертолетах силовая установка может приводить во вращение его несущий воздушный винт тремя способами. Первый способ, механический привод, заключается в том, что вращение на винт передается через редуктор от вала турбины

Из книги Ракеты и полеты в космос автора Лей Вилли

Из книги Воздушный бой (зарождение и развитие) автора Бабич В. К.

автора Ненахов Юрий Юрьевич

Глава 13. Артиллерийские реактивные системы залпового огня Как известно, требования Версальского договора категорически запретили Германии иметь либо разрабатывать большинство современных видов вооружения: боевую авиацию, танки, химическое оружие, тяжелую артиллерию

Из книги «Чудо-оружие» Третьего рейха автора Ненахов Юрий Юрьевич

Глава 17. Реактивные истребители Эрнст Хейнкель, вообще отличавшийся обостренным вкусом к новому, кроме разработок в области создания ракетных самолетов, зарекомендовал себя в начале 30-х годов как пионер реактивной авиации. Теоретической основой для этого стали

Из книги Фронт идет через КБ: Жизнь авиационного конструктора, рассказанная его друзьями, коллегами, сотрудниками [с иллюстрациями] автора Арлазоров Михаил Саулович

Глава пятая. Первые реактивные… Скорей – это наш закон. К нам, авиаконструкторам, никак не применима эта ходячая мудрость: «Лучше поздно, чем никогда». Для нас поздно хуже, чем никогда. Самолет, который опоздал, который вылетел в небо позже, чем ему было положено, похож на

автора Козырев Михаил Егорович

Из книги Авиация Красной армии автора Козырев Михаил Егорович

Сверхзвуковые

Военные

A-5 «Виджилент» (North American A-5 Vigilante) — единственный в истории авиации сверхзвуковой палубный бомбардировщик.

Як-141 (прототип) и F-35 Lightning II — сверхзвуковые палубные истребители.

Гражданские

Ту-144ЛЛ в полёте

За всю историю авиации было создано только два сверхзвуковых пассажирских авиалайнера.

  • СССР — Ту-144, первый полёт 31 декабря 1968, начало перевозок пассажиров 1 ноября 1977, 1 июня 1978 снят с эксплуатации после очередной катастрофы. Построено 16 шт., в перевозках пассажиров участвовали 2, совершено 55 рейсов, перевезено 3194 пассажира. Во всех рейсах командирами экипажа были лётчики-испытатели ОКБ Туполева.
  • Великобритания, Франция — Aérospatiale-BAC Concorde, первый полёт 2 марта 1969, начало эксплуатации 21 января 1976, выведен из эксплуатации 26 ноября 2003. Построено 20 машин, активно эксплуатировалось 14, перевезено более 3 млн пассажиров, средний налёт — 17 417 часов. Один потерян в катастрофе 25 июля 2000 года, имел налёт 11 989 часов при наибольшем из всех самолётов — 23 397 (заводской № 210, регистрация G-BOAD, находится в Intrepid Sea-Air-Space Museum (англ.)).

Описание конструкции истребителя МиГ-9

МиГ-9 - это цельнометаллический одноместный истребитель, оснащенный двумя турбореактивными двигателями. Он выполнен по классической схеме со среднерасположенным крылом и трехопорным убирающимся шасси.

Самолет имеет фюзеляж типа полумонокок с гладкой работающей обшивкой. В его носовой части находится воздухозаборник, который разделяется на два туннеля, каждый из которых подает воздух к одному из двигателей. Каналы имеют эллиптическое сечение, они проходят по боковым частям фюзеляжа, обходя кабину пилота с двух сторон.

Крыло самолета трапециевидной формы с закрылками и элеронами.

Хвостовое оперение МиГ-9 цельнометаллическое с высокорасположенным стабилизатором.

Кабина пилота находится в передней части фюзеляжа, она закрыта фонарем обтекаемой формы, состоящим из двух частей. Передняя часть, козырек, закреплена неподвижно, а задняя часть сдвигается назад по трем направляющим. На поздних модификациях машины козырек выполнен из броневого стекла. Кроме того, для защиты пилота на машине установлена передняя и задняя броневые плиты, их толщина составляет 12 мм.

МиГ-9 имеет трехстоечное убирающееся шасси с передним колесом. Система выпуска шасси - пневматическая.

Истребитель оснащался силовой установкой, состоящей из двух ТРД РД-20, которые являлись ничем иным, как копией немецких трофейных двигателей БМВ-003. Каждый из них мог развивать тягу в 800 кгс. Двигатели первой серии (А-1) имели ресурс всего лишь 10 часов, ресурс серии А-2 был увеличен до 50 часов, а моторы РД-20Б могли работать по 75 часов. Силовая установка МиГ-9 запускалась с помощью пусковых моторов «Ридель».

Двигатели устанавливались в реданной части фюзеляжа, сопла имели регулировку, их можно было ставить в четыре положения: «старт», «взлет», «полет» или «скоростной полет». Управление конусом сопловых аппаратов было электродистанционным.

Чтобы уберечь корпус от раскаленных газов, на нижней стороне хвостовой части был установлен специальный термоэкран, который представлял собой гофрированный лист жароупорной стали.

Топливо размещалось в десяти баках, расположенных в крыльях и фюзеляже. Их общий объем составлял 1595 литров. Топливные баки соединялись между собой, чтобы обеспечивать равномерное использование топлива, это позволяло сохранять центровку самолета во время полета.

На МиГ-9 был установлена радиостанция РСИ-6, радиополукомпас РПКО-10М, а также кислородный аппарат КП-14. Электропитание самолет получал от трофейного генератора LR-2000, который позже был заменен отечественным ГСК-1300.

Вооружение истребителя состояло из одной 37-мм пушки Н-37 с боекомплектом в сорок снарядов и двумя 23-мм пушками НС-23 с боекомплектом в 40 снарядов. Первоначально самолет планировали оснастить более мощной, 57-мм, пушкой Н-57, но впоследствии от этой идеи отказались.

Одной из основных проблем истребителя было попадание пороховых газов в двигатели, так как пушка Н-37 была установлена на перегородке между двумя воздухозаборники. На поздних модификациях самолета на Н-37 стали устанавливать газоотводные трубки. Машины, выпущенные ранее, оборудовались ими уже в строевых частях.

На первых МиГ-9 стоял коллиматорный прицел, позже он был заменен автоматическим стрелковым прицелом.

Основные типы в настоящее время

СССР/Россия

  • Ту-154. Пассажирский, 1968/1972, построено 935 (потеряно 69), завершение производства планируется в 2010, находится в стадии вывода из эксплуатации по причине низкой топливной эффективности и высокого шума, по ресурсу возможна эксплуатация до 2015-16 гг, в Аэрофлоте выведен 21 декабря 2009, после 38 лет службы.
  • Ил-76. Грузовой, военно-транспортный, 1971/1974, построено 960 (потерян 61, из них 13 уничтожены в боевых действиях), производится в настоящее время, проектируются обновлённые варианты. До 60 тонн груза, до 245 солдат (разные модификации).
  • Су-25. Штурмовик, 1975/1981, 1320 шт., планируется эксплуатация до 2020 года и дальнейшее производство.
  • Су-27. Истребитель многоцелевой, 4-го поколения. 1977/1984, построено около 600 базового типа, модификация Су-30 270 шт.[ 2956 дней ]
  • Aero L-39 Albatros. Основной учебный самолёт стран Варшавского договора, Чехословакия, 1968/1972, производился до 1999, построено 2868 шт.

Страны Запада

  • Boeing 737. Среднемагистральный пассажирский самолёт. Принят в эксплуатацию в 1968 году, построено 6285 шт., производится в настоящее время.

Принцип работы реактивного двигателя

Рис. 1. Схема турбореактивного (реактивного) двигателя. 1 - вход воздуха; 2 - компрессор; 3 - камера сгорания; 4 - сопло; 5 - турбина.

В реактивном двигателе (рис. 1) струя воздуха попадает в двигатель, встречается с вращающимися с огромной скоростью турбинами компрессора, который засасывает воздух из внешней среды (с помощью встроенного вентилятора). Таким образом, решаются две задачи - первичный забор воздуха и охлаждение всего двигателя в целом. Лопатки турбин компрессора сжимают воздух примерно в 30 раз и более и «проталкивают» его (нагнетают) в камеру сгорания (генерируется рабочее тело), которая является основной частью любого реактивного двигателя. Камера сгорания выполняет ещё и роль карбюратора, смешивая топливо с воздухом. Это может быть, например, смесь воздуха с керосином, как в турбореактивном двигателе современного реактивного самолёта, или же смесь жидкого кислорода со спиртом, как в некоторых жидкостных ракетных двигателях, или какое-нибудь твёрдое топливо пороховых ракет. После образования топливно-воздушной смеси она поджигается и выделяется энергия в виде теплоты, т. е. топливами реактивных двигателей могут служить лишь такие вещества, которые при химической реакции в двигателе (сгорании) выделяют достаточно много теплоты, а также образуют при этом большое количество газов.

В процессе возгорания происходит значительный разогрев смеси и окружающих деталей, а также объёмное расширение. Фактически реактивный двигатель использует для движения управляемый взрыв. Камера сгорания реактивного двигателя одна из самых горячих его частей (температура в ней достигает 2700°С), её необходимо постоянно интенсивно охлаждать. Реактивный двигатель снабжён соплом, через которое из двигателя наружу с огромной скоростью вытекают раскалённые газы - продукты сгорания топлива в двигателе. В одних двигателях газы попадают в сопло сразу же после камеры сгорания, например в ракетных или прямоточных двигателях. В турбореактивных двигателях газы после камеры сгорания сначала проходят через турбину, которой отдают часть своей тепловой энергии для приведения в движение компрессора, служащего для сжатия воздуха перед камерой сгорания. Но, так или иначе, сопло является последней частью двигателя - через него текут газы, перед тем как покинуть двигатель. Оно формирует непосредственно реактивную струю. В сопло направляется холодный воздух, нагнетаемый компрессором для охлаждения внутренних деталей двигателя. Реактивное сопло может иметь различные формы и конструкцию в зависимости от типа двигателя. Если скорость истечения должна превосходить скорость звука, то соплу придаётся форма расширяющейся трубы или же сначала суживающейся, а затем расширяющейся (сопло Лаваля). Только в трубе такой формы можно разогнать газ до сверхзвуковых скоростей, перешагнуть через «звуковой барьер».

В зависимости от того, используется или нет при работе реактивного двигателя окружающая среда, их подразделяют на два основных класса - воздушно-реактивные двигатели (ВРД) и ракетные двигатели (РД). Все ВРД - , рабочее тело которых образуется при реакции окисления горючего вещества кислородом воздуха. Поступающий из атмосферы воздух составляет основную массу рабочего тела ВРД. Т. о., аппарат с ВРД несёт на борту источник энергии (горючее), а бо́льшую часть рабочего тела черпает из окружающей среды. К ним относят турбореактивный двигатель (ТРД), прямоточный воздушно-реактивный двигатель (ПВРД), пульсирующий воздушно-реактивный двигатель (ПуВРД), гиперзвуковой прямоточный воздушно-реактивный двигатель (ГПВРД). В отличие от ВРД все компоненты рабочего тела РД находятся на борту аппарата, оснащённого РД. Отсутствие движителя, взаимодействующего с окружающей средой, и наличие всех компонентов рабочего тела на борту аппарата делают РД пригодным для работы в космосе. Существуют также комбинированные ракетные двигатели, представляющие собой как бы сочетание обоих основных типов.

Как работает реактивный двигатель

Рисунок 3 - Схема работы реактивного двигателя

Воздух из окружающего пространства поступает на всас вентиляторов, которые подают его далее лопатки вращающегося с очень высокой скоростью турбокомпрессора. При этом поступающий воздух выполняет 2 функции:

  • окислитель для сгорания топлива;
  • охладитель агрегата.

В лопаточном аппарате турбокомпрессора воздух крепко уплотняется и под высоким давлением (от 3 МПа) подается в топливную смесительную камеру реактивного двигателя. Из рисунка 3 видно, что камера сгорания устроена таким образом, что смешение воздуха производится в несколько ступеней — на входе и в самой камере. Сюда же подводится топливо.

Хорошо перемешанная и в достаточном количестве обогащенная смесь воспламеняется, и в результате сгорания образуется тепловая энергия с выделением огромного объема газов. Последние приводят во вращение турбину горячей части двигателя, привод которой служит приводом турбокомпрессора.

В отдельных моделях реактивных двигателей турбины на выходе не монтируются. По большей части данное исполнение применяется в конструкции и принципе работы ракетного двигателя, где продукты сгорания после камеры попадают на выходные сопла.

Покидая горячую ступень, газы во всех реактивных аппаратах проходят через сопла. Эти элементы отличаются по своим конструкциям для разных моделей реактивных агрегатов и представляют собой «трубу», которая сначала сужается, а к выходу газов увеличивается в диаметре. За счет такой конструкции отработавшие газы увеличивают свою скорость до сверхзвука и образуют реактивную силу.

Температура горения в «сердце» реактивного агрегата достигает 2500°С, поэтому конструктивно требовательны в постоянстве охлаждения.

Краткая история развития реактивных самолетов

Началом истории реактивных самолетов мира принято считать 1910 год, когда конструктор и инженер Румынии по имени Анри Конада создал летательный аппарат в основе с поршневым двигателем. Отличием от стандартных моделей было использование лопастного компрессора, который и приводил машину в движение. Особо активно конструктор начал утверждать в послевоенное время, что его аппарат был оснащен именно реактивным двигателем, хотя первоначально он заявлял категорически противоположное.

Изучая конструкцию перового реактивного самолета А. Конада, можно сделать несколько выводов. Первый - конструктивные особенности машины показывают, что расположенный впереди двигатель и его выхлопные газы убили бы пилота. Вторым вариантом развития мог быть только пожар на самолете. Именно об этом и говорил конструктор, при первом запуске огнем была уничтожена хвостовая часть.

Что касается самолетов реактивного типа, которые были изготовлены в 1940-е года, они имели совершенно другую конструкцию, когда двигатель и место пилота были удалены, и, как следствие, это повысило безопасность. В местах, где пламя двигателей соприкасалось с фюзеляжем, была установлена специальная жаростойкая сталь, что не приносило корпусу увечий и разрушений.

 

 

Это интересно: